2023-2024學(xué)年浙江省紹興市新昌縣市級(jí)名校中考一模數(shù)學(xué)試題含解析_第1頁(yè)
2023-2024學(xué)年浙江省紹興市新昌縣市級(jí)名校中考一模數(shù)學(xué)試題含解析_第2頁(yè)
2023-2024學(xué)年浙江省紹興市新昌縣市級(jí)名校中考一模數(shù)學(xué)試題含解析_第3頁(yè)
2023-2024學(xué)年浙江省紹興市新昌縣市級(jí)名校中考一模數(shù)學(xué)試題含解析_第4頁(yè)
2023-2024學(xué)年浙江省紹興市新昌縣市級(jí)名校中考一模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年浙江省紹興市新昌縣市級(jí)名校中考一模數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.學(xué)完分式運(yùn)算后,老師出了一道題“計(jì)算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式.其中正確的是()A.小明 B.小亮 C.小芳 D.沒有正確的2.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點(diǎn),連接AD,DE,AE與BD相交于點(diǎn)C,要使△ADC與△BDA相似,可以添加一個(gè)條件.下列添加的條件中錯(cuò)誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD3.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.4.通過觀察下面每個(gè)圖形中5個(gè)實(shí)數(shù)的關(guān)系,得出第四個(gè)圖形中y的值是()A.8 B.﹣8 C.﹣12 D.125.如圖,a∥b,點(diǎn)B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數(shù)()A.40° B.50° C.60° D.90°6.如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.80° D.100°7.如圖,△ABC是⊙O的內(nèi)接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°8.為了解某社區(qū)居民的用電情況,隨機(jī)對(duì)該社區(qū)10戶居民進(jìn)行調(diào)查,下表是這10戶居民2015年4月份用電量的調(diào)查結(jié)果:居民(戶)1234月用電量(度/戶)30425051那么關(guān)于這10戶居民月用電量(單位:度),下列說(shuō)法錯(cuò)誤的是()A.中位數(shù)是50 B.眾數(shù)是51 C.方差是42 D.極差是219.下列運(yùn)算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a610.下列四個(gè)幾何體,正視圖與其它三個(gè)不同的幾何體是()A. B.C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)在軸的正半軸上,,過點(diǎn)作軸交直線于點(diǎn),若反比例函數(shù)的圖象經(jīng)過點(diǎn),則的值為_________________.12.如圖,等邊△ABC的邊長(zhǎng)為6,∠ABC,∠ACB的角平分線交于點(diǎn)D,過點(diǎn)D作EF∥BC,交AB、CD于點(diǎn)E、F,則EF的長(zhǎng)度為_____.13.已知一次函數(shù)y=ax+b的圖象如圖所示,根據(jù)圖中信息請(qǐng)寫出不等式ax+b≥2的解集為___________.14.如圖,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一點(diǎn)D,使AD=4,將線段AD繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),點(diǎn)D的對(duì)應(yīng)點(diǎn)是點(diǎn)P,連接BP,取BP的中點(diǎn)F,連接CF,當(dāng)點(diǎn)P旋轉(zhuǎn)至CA的延長(zhǎng)線上時(shí),CF的長(zhǎng)是_____,在旋轉(zhuǎn)過程中,CF的最大長(zhǎng)度是_____.15.甲、乙、丙3名學(xué)生隨機(jī)排成一排拍照,其中甲排在中間的概率是_____.16.圖中是兩個(gè)全等的正五邊形,則∠α=______.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上.求反比例函數(shù)的表達(dá)式;在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE,直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說(shuō)明理由.18.(8分)某市舉行“傳承好家風(fēng)”征文比賽,已知每篇參賽征文成績(jī)記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了它們的成績(jī),并繪制了如圖不完整的兩幅統(tǒng)計(jì)圖表.征文比賽成績(jī)頻數(shù)分布表分?jǐn)?shù)段頻數(shù)頻率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合計(jì)1請(qǐng)根據(jù)以上信息,解決下列問題:(1)征文比賽成績(jī)頻數(shù)分布表中c的值是;(2)補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖;(3)若80分以上(含80分)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).19.(8分)重百江津商場(chǎng)銷售AB兩種商品,售出1件A種商品和4件B種商品所得利潤(rùn)為600元,售出3件A商品和5件B種商品所得利潤(rùn)為1100元.求每件A種商品和每件B種商品售出后所得利潤(rùn)分別為多少元?由于需求量大A、B兩種商品很快售完,重百商場(chǎng)決定再次購(gòu)進(jìn)A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤(rùn)不低于4000元,那么重百商場(chǎng)至少購(gòu)進(jìn)多少件A種商品?20.(8分)某校為了了解九年級(jí)學(xué)生體育測(cè)試成績(jī)情況,以九年(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖荆碅、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:(說(shuō)明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分﹣74分;D級(jí):60分以下)(1)寫出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比為,C級(jí)學(xué)生所在的扇形圓心角的度數(shù)為;(2)該班學(xué)生體育測(cè)試成績(jī)的中位數(shù)落在等級(jí)內(nèi);(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?21.(8分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點(diǎn)E,F(xiàn)同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng),已知點(diǎn)F的移動(dòng)速度是點(diǎn)E移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點(diǎn)移動(dòng)距離為x(0<x<6).(1)∠DCB=度,當(dāng)點(diǎn)G在四邊形ABCD的邊上時(shí),x=;(2)在點(diǎn)E,F(xiàn)的移動(dòng)過程中,點(diǎn)G始終在BD或BD的延長(zhǎng)線上運(yùn)動(dòng),求點(diǎn)G在線段BD的中點(diǎn)時(shí)x的值;(3)當(dāng)2<x<6時(shí),求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),y有最大值?并求出y的最大值.22.(10分)已知二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣3).(1)n=_____________;(2)若二次函數(shù)y=mx2﹣2mx+n的圖象與x軸有且只有一個(gè)交點(diǎn),求m值;(3)若二次函數(shù)y=mx2﹣2mx+n的圖象與平行于x軸的直線y=5的一個(gè)交點(diǎn)的橫坐標(biāo)為4,則另一個(gè)交點(diǎn)的坐標(biāo)為;(4)如圖,二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過點(diǎn)A(3,0),連接AC,點(diǎn)P是拋物線位于線段AC下方圖象上的任意一點(diǎn),求△PAC面積的最大值.23.(12分)如圖,圓O是的外接圓,AE平分交圓O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E作直線.(1)判斷直線l與圓O的關(guān)系,并說(shuō)明理由;(2)若的平分線BF交AD于點(diǎn)F,求證:;(3)在(2)的條件下,若,,求AF的長(zhǎng).24.某學(xué)校為增加體育館觀眾坐席數(shù)量,決定對(duì)體育館進(jìn)行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點(diǎn)A到地面的鉛直高度AC長(zhǎng)度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場(chǎng)館中央的運(yùn)動(dòng)區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計(jì)方案施工,新座位區(qū)最高點(diǎn)E到地面的鉛直高度EG長(zhǎng)度保持15米不變,使A、E兩點(diǎn)間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學(xué)校要求新坡腳F需與場(chǎng)館中央的運(yùn)動(dòng)區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請(qǐng)問施工方提供的設(shè)計(jì)方案是否滿足安全要求呢?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析:=====1.所以正確的應(yīng)是小芳.故選C.2、D【解析】

解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項(xiàng)正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項(xiàng)正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項(xiàng)正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對(duì)應(yīng)夾角,故D選項(xiàng)錯(cuò)誤,故選:D.考點(diǎn):1.圓周角定理2.相似三角形的判定3、C【解析】

結(jié)合圓錐的平面展開圖的特征,側(cè)面展開是一個(gè)扇形,底面展開是一個(gè)圓.【詳解】解:圓錐的展開圖是由一個(gè)扇形和一個(gè)圓形組成的圖形.故選C.【點(diǎn)睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關(guān)鍵.注意圓錐的平面展開圖是一個(gè)扇形和一個(gè)圓組成.4、D【解析】

根據(jù)前三個(gè)圖形中數(shù)字之間的關(guān)系找出運(yùn)算規(guī)律,再代入數(shù)據(jù)即可求出第四個(gè)圖形中的y值.【詳解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故選D.【點(diǎn)睛】本題考查了規(guī)律型中數(shù)字的變化類,根據(jù)圖形中數(shù)與數(shù)之間的關(guān)系找出運(yùn)算規(guī)律是解題的關(guān)鍵.5、B【解析】分析:根據(jù)“平行線的性質(zhì)、平角的定義和垂直的定義”進(jìn)行分析計(jì)算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點(diǎn)B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點(diǎn)睛:熟悉“平行線的性質(zhì)、平角的定義和垂直的定義”是正確解答本題的關(guān)鍵.6、D【解析】

根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠3=∠1,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.7、B【解析】

由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內(nèi)接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點(diǎn)睛】本題考查了圓周角定理,熟練運(yùn)用圓周角定理是解決問題的關(guān)鍵.8、C【解析】試題解析:10戶居民2015年4月份用電量為30,42,42,50,50,50,51,51,51,51,平均數(shù)為(30+42+42+50+50+50+51+51+51+51)=46.8,中位數(shù)為50;眾數(shù)為51,極差為51-30=21,方差為[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故選C.考點(diǎn):1.方差;2.中位數(shù);3.眾數(shù);4.極差.9、D【解析】

根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項(xiàng)的法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進(jìn)行計(jì)算即可.【詳解】A、(a2)5=a10,故原題計(jì)算錯(cuò)誤;B、(x﹣1)2=x2﹣2x+1,故原題計(jì)算錯(cuò)誤;C、3a2b和3ab2不是同類項(xiàng),不能合并,故原題計(jì)算錯(cuò)誤;D、a2?a4=a6,故原題計(jì)算正確;故選:D.【點(diǎn)睛】此題主要考查了冪的乘方、完全平方公式、合并同類項(xiàng)和同底數(shù)冪的乘法,關(guān)鍵是掌握各計(jì)算法則.10、C【解析】

根據(jù)幾何體的三視圖畫法先畫出物體的正視圖再解答.【詳解】解:A、B、D三個(gè)幾何體的主視圖是由左上一個(gè)正方形、下方兩個(gè)正方形構(gòu)成的,而C選項(xiàng)的幾何體是由上方2個(gè)正方形、下方2個(gè)正方形構(gòu)成的,故選:C.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)幾何體三視圖的理解,掌握幾何體的主視圖是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】

先求出直線y=x+2與坐標(biāo)軸的交點(diǎn)坐標(biāo),再由三角形的中位線定理求出CD,得到C點(diǎn)坐標(biāo).【詳解】解:令x=0,得y=x+2=0+2=2,

∴B(0,2),

∴OB=2,

令y=0,得0=x+2,解得,x=-6,

∴A(-6,0),

∴OA=OD=6,

∵OB∥CD,

∴CD=2OB=4,

∴C(6,4),

把c(6,4)代入y=(k≠0)中,得k=1,

故答案為:1.【點(diǎn)睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合,需要掌握求函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo)方法,三角形的中位線定理,待定系數(shù)法.本題的關(guān)鍵是求出C點(diǎn)坐標(biāo).12、4【解析】試題分析:根據(jù)BD和CD分別平分∠ABC和∠ACB,和EF∥BC,利用兩直線平行,內(nèi)錯(cuò)角相等和等量代換,求證出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分別平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等邊△ABC的邊長(zhǎng)為6,∵EF∥BC,∴△ADE是等邊三角形,∴EF=AE=2BE,∴EF==,故答案為4考點(diǎn):等邊三角形的判定與性質(zhì);平行線的性質(zhì).13、x≥1.【解析】試題分析:根據(jù)題意得當(dāng)x≥1時(shí),ax+b≥2,即不等式ax+b≥2的解集為x≥1.故答案為x≥1.考點(diǎn):一次函數(shù)與一元一次不等式.14、,+2.【解析】

當(dāng)點(diǎn)P旋轉(zhuǎn)至CA的延長(zhǎng)線上時(shí),CP=20,BC=2,利用勾股定理求出BP,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得CF的長(zhǎng);取AB的中點(diǎn)M,連接MF和CM,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得CM的長(zhǎng),利用三角形中位線定理,可得FM的長(zhǎng),再根據(jù)當(dāng)且僅當(dāng)M、F、C三點(diǎn)共線且M在線段CF上時(shí)CF最大,即可得到結(jié)論.【詳解】當(dāng)點(diǎn)P旋轉(zhuǎn)至CA的延長(zhǎng)線上時(shí),如圖2.∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,∴BP=,∵BP的中點(diǎn)是F,∴CF=BP=.取AB的中點(diǎn)M,連接MF和CM,如圖2.∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,∴AB=2.∵M(jìn)為AB中點(diǎn),∴CM=AB=,∵將線段AD繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),點(diǎn)D的對(duì)應(yīng)點(diǎn)是點(diǎn)P,∴AP=AD=4,∵M(jìn)為AB中點(diǎn),F(xiàn)為BP中點(diǎn),∴FM=AP=2.當(dāng)且僅當(dāng)M、F、C三點(diǎn)共線且M在線段CF上時(shí)CF最大,此時(shí)CF=CM+FM=+2.故答案為,+2.【點(diǎn)睛】考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了直角三角形斜邊上的中線等于斜邊的一半以及勾股定理.根據(jù)題意正確畫出對(duì)應(yīng)圖形是解題的關(guān)鍵.15、【解析】列舉出所有情況,看甲排在中間的情況占所有情況的多少即為所求的概率.

根據(jù)題意,列出甲、乙、丙三個(gè)同學(xué)排成一排拍照的所有可能:

甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6種情況,

只有2種甲在中間,所以甲排在中間的概率是=.

故答案為;點(diǎn)睛:本題主要考查了列舉法求概率,用到的知識(shí)點(diǎn)為:概率等于所求情況數(shù)與總情況數(shù)之比,關(guān)鍵是列舉出同等可能的所有情況.16、108°【解析】

先求出正五邊形各個(gè)內(nèi)角的度數(shù),再求出∠BCD和∠BDC的度數(shù),求出∠CBD,即可求出答案.【詳解】如圖:∵圖中是兩個(gè)全等的正五邊形,∴BC=BD,∴∠BCD=∠BDC,∵圖中是兩個(gè)全等的正五邊形,∴正五邊形每個(gè)內(nèi)角的度數(shù)是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案為108°.【點(diǎn)睛】本題考查了正多邊形和多邊形的內(nèi)角和外角,能求出各個(gè)角的度數(shù)是解此題的關(guān)鍵.三、解答題(共8題,共72分)17、(1);(2)P(,0);(3)E(,﹣1),在.【解析】

(1)將點(diǎn)A(,1)代入,利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;(2)先由射影定理求出BC=3,那么B(,﹣3),計(jì)算求出S△AOB=××4=.則S△AOP=S△AOB=.設(shè)點(diǎn)P的坐標(biāo)為(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出E點(diǎn)坐標(biāo)為(﹣,﹣1),即可求解.【詳解】(1)∵點(diǎn)A(,1)在反比例函數(shù)的圖象上,∴k=×1=,∴反比例函數(shù)的表達(dá)式為;(2)∵A(,1),AB⊥x軸于點(diǎn)C,∴OC=,AC=1,由射影定理得=AC?BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.設(shè)點(diǎn)P的坐標(biāo)為(m,0),∴×|m|×1=,∴|m|=,∵P是x軸的負(fù)半軸上的點(diǎn),∴m=﹣,∴點(diǎn)P的坐標(biāo)為(,0);(3)點(diǎn)E在該反比例函數(shù)的圖象上,理由如下:∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴點(diǎn)E在該反比例函數(shù)的圖象上.考點(diǎn):待定系數(shù)法求反比例函數(shù)解析式;反比例函數(shù)系數(shù)k的幾何意義;坐標(biāo)與圖形變化-旋轉(zhuǎn).18、(1)0.2;(2)答案見解析;(3)300【解析】

第一問,根據(jù)頻率的和為1,求出c的值;第二問,先用分?jǐn)?shù)段是90到100的頻數(shù)和頻率求出總的樣本數(shù)量,然后再乘以頻率分別求出a和b的值,再畫出頻數(shù)分布直方圖;第三問用全市征文的總篇數(shù)乘以80分以上的頻率得到全市80分以上的征文的篇數(shù).【詳解】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案為0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖:(3)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù)為:1000×(0.2+0.1)=300(篇).【點(diǎn)睛】掌握有關(guān)頻率和頻數(shù)的相關(guān)概念和計(jì)算,是解答本題的關(guān)鍵.19、(1)200元和100元(2)至少6件【解析】

(1)設(shè)A種商品售出后所得利潤(rùn)為x元,B種商品售出后所得利潤(rùn)為y元.由售出1件A種商品和4件B種商品所得利潤(rùn)為600元,售出3件A種商品和5件B種商品所得利潤(rùn)為1100元建立兩個(gè)方程,構(gòu)成方程組求出其解就可以;(2)設(shè)購(gòu)進(jìn)A種商品a件,則購(gòu)進(jìn)B種商品(34﹣a)件.根據(jù)獲得的利潤(rùn)不低于4000元,建立不等式求出其解即可.【詳解】解:(1)設(shè)A種商品售出后所得利潤(rùn)為x元,B種商品售出后所得利潤(rùn)為y元.由題意,得,解得:,答:A種商品售出后所得利潤(rùn)為200元,B種商品售出后所得利潤(rùn)為100元.(2)設(shè)購(gòu)進(jìn)A種商品a件,則購(gòu)進(jìn)B種商品(34﹣a)件.由題意,得200a+100(34﹣a)≥4000,解得:a≥6答:威麗商場(chǎng)至少需購(gòu)進(jìn)6件A種商品.20、(1)4%;(2)72°;(3)380人【解析】

(1)根據(jù)A級(jí)人數(shù)及百分?jǐn)?shù)計(jì)算九年級(jí)(1)班學(xué)生人數(shù),用總?cè)藬?shù)減A、B、D級(jí)人數(shù),得C級(jí)人數(shù),再用C級(jí)人數(shù)÷總?cè)藬?shù)×360°,得C等級(jí)所在的扇形圓心角的度數(shù);(2)將人數(shù)按級(jí)排列,可得該班學(xué)生體育測(cè)試成績(jī)的中位數(shù);(3)用(A級(jí)百分?jǐn)?shù)+B級(jí)百分?jǐn)?shù))×1900,得這次考試中獲得A級(jí)和B級(jí)的九年級(jí)學(xué)生共有的人數(shù);(4)根據(jù)各等級(jí)人數(shù)多少,設(shè)計(jì)合格的等級(jí),使大多數(shù)人能合格.【詳解】解:(1)九年級(jí)(1)班學(xué)生人數(shù)為13÷26%=50人,C級(jí)人數(shù)為50-13-25-2=10人,C等級(jí)所在的扇形圓心角的度數(shù)為10÷50×360°=72°,故答案為72°;(2)共50人,其中A級(jí)人數(shù)13人,B級(jí)人數(shù)25人,故該班學(xué)生體育測(cè)試成績(jī)的中位數(shù)落在B等級(jí)內(nèi),故答案為B;(3)估計(jì)這次考試中獲得A級(jí)和B級(jí)的九年級(jí)學(xué)生共有(26%+25÷50)×1900=1444人;(4)建議:把到達(dá)A級(jí)和B級(jí)的學(xué)生定為合格,(答案不唯一).21、(1)30;2;(2)x=1;(3)當(dāng)x=時(shí),y最大=;【解析】

(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當(dāng)?shù)冗吶切巍鱁GF的高=時(shí),點(diǎn)G在AD上,此時(shí)x=2;(2)根據(jù)勾股定理求出的長(zhǎng)度,根據(jù)三角函數(shù),求出∠ADB=30°,根據(jù)中點(diǎn)的定義得出根據(jù)等邊三角形的性質(zhì)得到,即可求出x的值;

(3)圖2,圖3三種情形解決問題.①當(dāng)2<x<3時(shí),如圖2中,點(diǎn)E、F在線段BC上,△EFG與四邊形ABCD重疊部分為四邊形EFNM;②當(dāng)3≤x<6時(shí),如圖3中,點(diǎn)E在線段BC上,點(diǎn)F在射線BC上,重疊部分是△ECP;【詳解】(1)作DH⊥BC于H,則四邊形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∴當(dāng)?shù)冗吶切巍鱁GF的高等于時(shí),點(diǎn)G在AD上,此時(shí)x=2,∠DCB=30°,故答案為30,2,(2)如圖∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中,∴∠ADB=30°∵G是BD的中點(diǎn)∴∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等邊三角形,∴∠GFE=60°∴∠BGF=90°在Rt△BGF中,∴2x=2即x=1;(3)分兩種情況:當(dāng)2<x<3,如圖2點(diǎn)E、點(diǎn)F在線段BC上△GEF與四邊形ABCD重疊部分為四邊形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,∴∴當(dāng)時(shí),最大當(dāng)3≤x<6時(shí),如圖3,點(diǎn)E在線段BC上,點(diǎn)F在線段BC的延長(zhǎng)線上,△GEF與四邊形ABCD重疊部分為△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,對(duì)稱軸為當(dāng)x<6時(shí),y隨x的增大而減小∴當(dāng)x=3時(shí),最大綜上所述:當(dāng)時(shí),最大【點(diǎn)睛】屬于四邊形的綜合題,考查動(dòng)點(diǎn)問題,等邊三角形的性質(zhì),三角函數(shù),二次函數(shù)的最值等,綜合性比較強(qiáng),難度較大.22、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)當(dāng)a=時(shí),△PAC的面積取最大值,最大值為【解析】

(2)將(0,-2)代入二次函數(shù)解析式中即可求出n值;(2)由二次函數(shù)圖象與x軸只有一個(gè)交點(diǎn),利用根的判別式△=0,即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;(2)根據(jù)二次函數(shù)的解析式利用二次函數(shù)的性質(zhì)可找出二次函數(shù)圖象的對(duì)稱軸,利用二次函數(shù)圖象的對(duì)稱性即可找出另一個(gè)交點(diǎn)的坐標(biāo);(4)將點(diǎn)A的坐標(biāo)代入二次函數(shù)解析式中可求出m值,由此可得出二次函數(shù)解析式,由點(diǎn)A、C的坐標(biāo),利用待定系數(shù)法可求出直線AC的解析式,過點(diǎn)P作PD⊥x軸于點(diǎn)D,交AC于點(diǎn)Q,設(shè)點(diǎn)P的坐標(biāo)為(a,a2-2a-2),則點(diǎn)Q的坐標(biāo)為(a,a-2),點(diǎn)D的坐標(biāo)為(a,0),根據(jù)三角形的面積公式可找出S△ACP關(guān)于a的函數(shù)關(guān)系式,配方后即可得出△PAC面積的最大值.【詳解】解:(2)∵二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣2),∴n=﹣2.故答案為﹣2.(2)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象與x軸有且只有一個(gè)交點(diǎn),∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函數(shù)解析式為y=mx2﹣2mx﹣2,∴二次函數(shù)圖象的對(duì)稱軸為直線x=﹣=2.∵該二次函數(shù)圖象與平行于x軸的直線y=5的一個(gè)交點(diǎn)的橫坐標(biāo)為4,∴另一交點(diǎn)的橫坐標(biāo)為2×2﹣4=﹣2,∴另一個(gè)交點(diǎn)的坐標(biāo)為(﹣2,5).故答案為(﹣2,5).(4)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象經(jīng)過點(diǎn)A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函數(shù)解析式為y=x2﹣2x﹣2.設(shè)直線AC的解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論