版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省河源市連平縣附城中學2023-2024學年高三二診模擬考試數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是等差數(shù)列,且公差不為零,其前項和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.633.函數(shù)在上單調遞減的充要條件是()A. B. C. D.4.“哥德巴赫猜想”是近代三大數(shù)學難題之一,其內容是:一個大于2的偶數(shù)都可以寫成兩個質數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學家哥德巴赫提出的,我國數(shù)學家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質數(shù)的概率為()A. B. C. D.5.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.6.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.7.函數(shù)的最小正周期是,則其圖象向左平移個單位長度后得到的函數(shù)的一條對稱軸是()A. B. C. D.8.若函數(shù)有且只有4個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.9.已知復數(shù)滿足,則的最大值為()A. B. C. D.610.設復數(shù)滿足(為虛數(shù)單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知平面平面,且是正方形,在正方形內部有一點,滿足與平面所成的角相等,則點的軌跡長度為()A. B.16 C. D.12.若,,,點C在AB上,且,設,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在回歸分析的問題中,我們可以通過對數(shù)變換把非線性回歸方程,()轉化為線性回歸方程,即兩邊取對數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_________.14.“直線l1:與直線l2:平行”是“a=2”的_______條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).15.某中學舉行了一次消防知識競賽,將參賽學生的成績進行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數(shù)是80,則成績在區(qū)間的學生人數(shù)是__________.16.拋物線的焦點到準線的距離為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.18.(12分)已知,,,.(1)求的值;(2)求的值.19.(12分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點;(2)若函數(shù)在區(qū)間上的最小值為1,求的值.20.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.21.(12分)設為等差數(shù)列的前項和,且,.(1)求數(shù)列的通項公式;(2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.22.(10分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據等差數(shù)列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調遞減數(shù)列,則必存在,使得當時,,則,不合乎題意;若,由且數(shù)列為單調遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設,當時,,此時,,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合等差數(shù)列的前項和公式是解決本題的關鍵,屬于中等題.2、B【解析】
根據程序框圖中的循環(huán)結構的運算,直至滿足條件退出循環(huán)體,即可得出結果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.3、C【解析】
先求導函數(shù),函數(shù)在上單調遞減則恒成立,對導函數(shù)不等式換元成二次函數(shù),結合二次函數(shù)的性質和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數(shù)單調區(qū)間.求三角函數(shù)單調區(qū)間的兩種方法:(1)代換法:就是將比較復雜的三角函數(shù)含自變量的代數(shù)式整體當作一個角(或),利用基本三角函數(shù)的單調性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結合圖象求它的單調區(qū)間.4、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質數(shù)的有(3,3),根據古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.5、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.6、C【解析】
根據雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據圓的性質可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質,需掌握雙曲線的漸近線求法,屬于中檔題.7、D【解析】
由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經過平移后得到函數(shù)解析式為,由,得,當時,.故選D.【點睛】本題考查了正弦函數(shù)圖像的性質及函數(shù)圖像的平移變換,屬基礎題.8、B【解析】
由是偶函數(shù),則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數(shù)性質的應用以及根據零點個數(shù)確定參數(shù)的取值范圍,基礎題.9、B【解析】
設,,利用復數(shù)幾何意義計算.【詳解】設,由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復數(shù)模的最大值,其實本題可以利用不等式來解決.10、A【解析】
由復數(shù)的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數(shù)對應的點所在象限的求解,涉及到復數(shù)的除法運算,屬于基礎題.11、C【解析】
根據與平面所成的角相等,判斷出,建立平面直角坐標系,求得點的軌跡方程,由此求得點的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點建立平面直角坐標系如下圖所示,則,,設(點在第一象限內),由得,即,化簡得,由于點在第一象限內,所以點的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點的軌跡長度為.故選:C【點睛】本小題主要考查線面角的概念和運用,考查動點軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結合的數(shù)學思想方法,屬于難題.12、B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
轉化()為,即得解.【詳解】由題意:().故答案為:【點睛】本題考查類比法求函數(shù)的值域,考查了學生邏輯推理,轉化劃歸,數(shù)學運算的能力,屬于中檔題.14、必要不充分【解析】
先求解直線l1與直線l2平行的等價條件,然后進行判斷.【詳解】“直線l1:與直線l2:平行”等價于a=±2,故“直線l1:與直線l2:平行”是“a=2”的必要不充分條件.故答案為:必要不充分.【點睛】本題主要考查充分必要條件的判定,把已知條件進行等價轉化是求解這類問題的關鍵,側重考查邏輯推理的核心素養(yǎng).15、30【解析】
根據頻率直方圖中數(shù)據先計算樣本容量,再計算成績在80~100分的頻率,繼而得解.【詳解】根據直方圖知第二組的頻率是,則樣本容量是,又成績在80~100分的頻率是,則成績在區(qū)間的學生人數(shù)是.故答案為:30【點睛】本題考查了頻率分布直方圖的應用,考查了學生綜合分析,數(shù)據處理,數(shù)形運算的能力,屬于基礎題.16、【解析】試題分析:由題意得,因為拋物線,即,即焦點到準線的距離為.考點:拋物線的性質.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)證明平面即平面平面得證;(2)分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標系C-xyz,再利用向量方法求二面角的余弦值.【詳解】(1)證明:因為平面ABC,所以因為.所以.即又.所以平面因為平面.所以平面平面(2)解:由題可得兩兩垂直,所以分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標系C-xyz,則,所以設平面的一個法向量為,由.得令,得又平面,所以平面的一個法向量為.所以二面角的余弦值為.【點睛】本題主要考查空間幾何位置關系的證明,考查二面角的計算,意在考查學生對這些知識的理解掌握水平.18、(1)(2)【解析】
(1)先利用同角的三角函數(shù)關系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【點睛】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡,考查和角公式,二倍角公式,同角的三角函數(shù)關系的應用,考查運算能力.19、(1)證明見解析;(2)【解析】
(1)求解出導函數(shù),分析導函數(shù)的單調性,再結合零點的存在性定理說明在上存在唯一的零點即可;(2)根據導函數(shù)零點,判斷出的單調性,從而可確定,利用以及的單調性,可確定出之間的關系,從而的值可求.【詳解】(1)證明:∵,∴.∵在區(qū)間上單調遞增,在區(qū)間上單調遞減,∴函數(shù)在上單調遞增.又,令,,則在上單調遞減,,故.令,則所以函數(shù)在上存在唯一的零點.(2)解:由(1)可知存在唯一的,使得,即(*).函數(shù)在上單調遞增.∴當時,,單調遞減;當時,,單調遞增.∴.由(*)式得.∴,顯然是方程的解.又∵是單調遞減函數(shù),方程有且僅有唯一的解,把代入(*)式,得,∴,即所求實數(shù)的值為.【點睛】本題考查函數(shù)與導數(shù)的綜合應用,其中涉及到判斷函數(shù)在給定區(qū)間上的零點個數(shù)以及根據函數(shù)的最值求解參數(shù),難度較難.(1)判斷函數(shù)的零點個數(shù)時,可結合函數(shù)的單調性以及零點的存在性定理進行判斷;(2)函數(shù)的“隱零點”問題,可通過“設而不求”的思想進行分析.20、(1);(2).【解析】
(1)由正弦定理化簡已知等式可得sinBcosA﹣sinAsinB=1,結合sinB>1,可求tanA=,結合范圍A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根據三角形的面積公式即可計算得解.【詳解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根據正弦定理得到∴b=6,∴S△ABC=ab==6.【點睛】本題主要考查了正弦定理,三角形的面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.21、(1);(2).【解析】
(1)設等差數(shù)列的公差為,根據題意得出關于和的方程組,解出這兩個量的值,然后利用等差數(shù)列的通項公式可得出數(shù)列的通項公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級下冊《買鮮花》課件版
- 2021屆浙江省寧波市九校高一上學期期末聯(lián)考數(shù)學試題(解析版)
- 人教版八年級上學期期中考試數(shù)學試卷-(含答案)
- 《風險投資方法》課件
- 2025年1月八省聯(lián)考高考綜合改革適應性測試-高三化學(內蒙古卷)
- 天津市和平區(qū)2023-2024學年高三上學期期末質量調查英語試卷
- 醫(yī)藥行業(yè)前臺接待工作心得
- 家政服務保姆照顧技能培訓總結
- 環(huán)保行業(yè)美工工作總結
- 貴州省安順市紫云縣2021-2022學年九年級上學期期末化學試題
- 智慧審計平臺項目匯報
- 湖北省天門市2022-2023學年三年級上學期語文期末試卷(含答案)
- 《建筑賦比興》一些筆記和摘錄(上)
- 【服裝企業(yè)比音勒芬服飾的財務問題分析(基于杜邦分析)9700字論文】
- 電氣工程及其自動化低壓電器中繼電器應用
- 實驗九(b)液體表面張力系數(shù)的測定(用毛細管法)
- 全球機場三字碼、四字碼
- 2023-2024學年重慶市兩江新區(qū)四上數(shù)學期末質量檢測試題含答案
- 泌尿外科內鏡診療技術質量保障措施及應急預案
- M7.5漿砌塊石擋土墻砌筑施工方法
- 2022年度黑龍江省重點新產品名單
評論
0/150
提交評論