版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省資陽市重點(diǎn)中學(xué)2023-2024學(xué)年高三沖刺模擬數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象向右平移個(gè)單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的值為()A. B. C.2 D.2.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時(shí),A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?3.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為坐標(biāo)原點(diǎn)),則k的值為()A. B. C.或- D.和-4.函數(shù)的一個(gè)單調(diào)遞增區(qū)間是()A. B. C. D.5.已知函數(shù)(),若函數(shù)在上有唯一零點(diǎn),則的值為()A.1 B.或0 C.1或0 D.2或06.的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中常數(shù)項(xiàng)為A.-40 B.-20 C.20 D.407.記為數(shù)列的前項(xiàng)和數(shù)列對(duì)任意的滿足.若,則當(dāng)取最小值時(shí),等于()A.6 B.7 C.8 D.98.在直角梯形中,,,,,點(diǎn)為上一點(diǎn),且,當(dāng)?shù)闹底畲髸r(shí),()A. B.2 C. D.9.某個(gè)命題與自然數(shù)有關(guān),且已證得“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”.現(xiàn)已知當(dāng)時(shí),該命題不成立,那么()A.當(dāng)時(shí),該命題不成立 B.當(dāng)時(shí),該命題成立C.當(dāng)時(shí),該命題不成立 D.當(dāng)時(shí),該命題成立10.復(fù)數(shù)().A. B. C. D.11.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度12.已知向量,是單位向量,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.14.三棱錐中,點(diǎn)是斜邊上一點(diǎn).給出下列四個(gè)命題:①若平面,則三棱錐的四個(gè)面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內(nèi)心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號(hào)是__________.(把你認(rèn)為正確命題的序號(hào)都填上)15.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____16.設(shè),滿足約束條件,若的最大值是10,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.18.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個(gè)半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計(jì)劃建造一條自小鎮(zhèn)經(jīng)小島至對(duì)岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計(jì)成與圓相切.設(shè).(1)試將通道的長(zhǎng)表示成的函數(shù),并指出定義域;(2)若建造通道的費(fèi)用是每公里100萬元,則建造此通道最少需要多少萬元?19.(12分)已知分別是內(nèi)角的對(duì)邊,滿足(1)求內(nèi)角的大?。?)已知,設(shè)點(diǎn)是外一點(diǎn),且,求平面四邊形面積的最大值.20.(12分)設(shè),函數(shù).(1)當(dāng)時(shí),求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.21.(12分)已知函數(shù)(I)當(dāng)時(shí),解不等式.(II)若不等式恒成立,求實(shí)數(shù)的取值范圍22.(10分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點(diǎn)個(gè)數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由函數(shù)的圖象向右平移個(gè)單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時(shí),取得最大值,即,,,當(dāng)時(shí),解得,故選C.點(diǎn)睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時(shí),取得最大值,求解可得實(shí)數(shù)的值.2、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點(diǎn):交集及其運(yùn)算.3、C【解析】
直線過定點(diǎn),直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過定點(diǎn)(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對(duì)稱性可知k=±.故選C.【點(diǎn)睛】本題考查過定點(diǎn)的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.4、D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡(jiǎn)表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時(shí),D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D【點(diǎn)睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).5、C【解析】
求出函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時(shí),根據(jù)函數(shù)的單調(diào)性及零點(diǎn)存在性定理可判斷;【詳解】解:∵(),∴,∴當(dāng)時(shí),由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個(gè)零點(diǎn),∴的值是1或0.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問題,零點(diǎn)存在性定理的應(yīng)用,屬于中檔題.6、D【解析】令x=1得a=1.故原式=.的通項(xiàng),由5-2r=1得r=2,對(duì)應(yīng)的常數(shù)項(xiàng)=80,由5-2r=-1得r=3,對(duì)應(yīng)的常數(shù)項(xiàng)=-40,故所求的常數(shù)項(xiàng)為40,選D解析2.用組合提取法,把原式看做6個(gè)因式相乘,若第1個(gè)括號(hào)提出x,從余下的5個(gè)括號(hào)中選2個(gè)提出x,選3個(gè)提出;若第1個(gè)括號(hào)提出,從余下的括號(hào)中選2個(gè)提出,選3個(gè)提出x.故常數(shù)項(xiàng)==-40+80=407、A【解析】
先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對(duì)任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時(shí),取最小值.故選:A【點(diǎn)睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項(xiàng),采用了賦值法,屬于中檔題.8、B【解析】
由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點(diǎn)在線段上,設(shè),則,即,又因?yàn)樗?,所以,?dāng)時(shí),等號(hào)成立.所以.故選:B.【點(diǎn)睛】本題考查平面向量線性運(yùn)算中的加法運(yùn)算、向量共線定理,以及運(yùn)用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.9、C【解析】
寫出命題“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進(jìn)行判斷.【詳解】由逆否命題可知,命題“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”的逆否命題為“假設(shè)當(dāng)時(shí)該命題不成立,則當(dāng)時(shí)該命題也不成立”,由于當(dāng)時(shí),該命題不成立,則當(dāng)時(shí),該命題也不成立,故選:C.【點(diǎn)睛】本題考查逆否命題與原命題等價(jià)性的應(yīng)用,解題時(shí)要寫出原命題的逆否命題,結(jié)合逆否命題的等價(jià)性進(jìn)行判斷,考查邏輯推理能力,屬于中等題.10、A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化.11、A【解析】
由的最小正周期是,得,即,因此它的圖象向左平移個(gè)單位可得到的圖象.故選A.考點(diǎn):函數(shù)的圖象與性質(zhì).【名師點(diǎn)睛】三角函數(shù)圖象變換方法:12、C【解析】
設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時(shí),;當(dāng)時(shí),;綜上所述:.故選:C.【點(diǎn)睛】本題考查向量的模、夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意的兩種情況.二、填空題:本題共4小題,每小題5分,共20分。13、55【解析】
由求出.由,可得,兩式相減,可得數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時(shí),,當(dāng)時(shí),由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,.故答案為:55.【點(diǎn)睛】本題考查求數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.14、①②③【解析】
對(duì)①,由線面平行的性質(zhì)可判斷正確;對(duì)②,三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對(duì)③,結(jié)合題意作出圖形,由勾股定理和內(nèi)接圓對(duì)應(yīng)面積公式求出錐體的高,則可求解;對(duì)④,由動(dòng)點(diǎn)分析可知,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯(cuò)誤;【詳解】對(duì)于①,因?yàn)槠矫?,所以,,,又,所以平面,所以,故四個(gè)面都是直角三角形,∴①正確;對(duì)于②,若,,,平面,∴三棱錐的外接球可以看作棱長(zhǎng)為4的正方體的外接球,∴,,∴體積為,∴②正確;對(duì)于③,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對(duì)于④,∵若,平面,則直線與平面所成的角最大時(shí),點(diǎn)與點(diǎn)重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點(diǎn)睛】本題考查立體幾何基本關(guān)系的應(yīng)用,線面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題15、80211【解析】
由,利用二項(xiàng)式定理即可得,分別令、后,作差即可得.【詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,屬于中檔題.16、【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標(biāo)函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當(dāng)且僅當(dāng)目標(biāo)函數(shù)過點(diǎn),取得最大值,故可得,解得.故答案為:.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)要證明,只需證明即可;(2)有3個(gè)根,可轉(zhuǎn)化為有3個(gè)根,即與有3個(gè)不同交點(diǎn),利用導(dǎo)數(shù)作出的圖象即可.【詳解】(1)令,則,當(dāng)時(shí),,故在上單調(diào)遞增,所以,即,所以.(2)由已知,,依題意,有3個(gè)零點(diǎn),即有3個(gè)根,顯然0不是其根,所以有3個(gè)根,令,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,故在單調(diào)遞減,在,上單調(diào)遞增,作出的圖象,易得.故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)證明不等式以及研究函數(shù)零點(diǎn)個(gè)數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.18、(1),定義域是.(2)百萬【解析】
(1)以為原點(diǎn),直線為軸建立如圖所示的直角坐標(biāo)系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點(diǎn),直線為軸建立如圖所示的直角坐標(biāo)系.設(shè),則,,.因?yàn)?,所以直線的方程為,即,因?yàn)閳A與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當(dāng)時(shí),,設(shè)銳角滿足,則,所以關(guān)于的函數(shù)是,定義域是.(2)要使建造此通道費(fèi)用最少,只要通道的長(zhǎng)度即最?。睿?,設(shè)銳角,滿足,得.列表:0減極小值增所以時(shí),,所以建造此通道的最少費(fèi)用至少為百萬元.【點(diǎn)睛】本題考查三角函數(shù)模型的實(shí)際應(yīng)用、利用導(dǎo)數(shù)求函數(shù)的最小值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.19、(1)(2)【解析】
(1)首先利用誘導(dǎo)公式及兩角和的余弦公式得到,再由同角三角三角的基本關(guān)系得到,即可求出角;(2)由(1)知,是正三角形,設(shè),由余弦定理可得:,則,得到,再利用輔助角公式化簡(jiǎn),最后由正弦函數(shù)的性質(zhì)求得最大值;【詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設(shè),由余弦定理得:,,,所以當(dāng)時(shí)有最大值【點(diǎn)睛】本題考查同角三角函數(shù)的基本關(guān)系,三角恒等變換公式的應(yīng)用,三角形面積公式的應(yīng)用,以及正弦函數(shù)的性質(zhì),屬于中檔題.20、(1)極大值是,無極小值;(2)【解析】
(1)當(dāng)時(shí),可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點(diǎn),從而可得原函數(shù)的極值點(diǎn)及極大值;(2)表示出,并求得,由題意,得方程有兩個(gè)不同的實(shí)根,,從而可得△及,由,得.則可化為對(duì)任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當(dāng)時(shí),.令,則,顯然在上單調(diào)遞減,又因?yàn)?,故時(shí),總有,所以在上單調(diào)遞減.由于,所以當(dāng)時(shí),;當(dāng)時(shí),.當(dāng)變化時(shí),的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個(gè)不等實(shí)根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當(dāng)時(shí),不等式恒成立,即.當(dāng)時(shí),恒成立,即,令,易證是上的減函數(shù).因此,當(dāng)時(shí),,故.當(dāng)時(shí),恒成立,即,因此,當(dāng)時(shí),所以.綜上所述,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識(shí),考查分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度鋁灰處理廢棄物安全處置合同4篇
- 二零二四年合同審查常年法律顧問合同3篇
- 2025年度路燈照明設(shè)備綠色供應(yīng)鏈采購合同4篇
- 年度智能手表市場(chǎng)分析及競(jìng)爭(zhēng)策略分析報(bào)告
- 二零二五版環(huán)保設(shè)施采購合同范本參考3篇
- 2025年度高校創(chuàng)新創(chuàng)業(yè)基地共建合同3篇
- 2025年度鋁材產(chǎn)品安全檢測(cè)與認(rèn)證合同4篇
- 二零二四年幼兒園蔬菜配送及食品安全責(zé)任合同3篇
- 二零二五年度高端別墅房產(chǎn)買賣合同樣本3篇
- 2025預(yù)拌混凝土行業(yè)標(biāo)準(zhǔn)化建設(shè)與認(rèn)證合同示范文本3篇
- 地系梁工程施工方案
- 藏文基礎(chǔ)-教你輕輕松松學(xué)藏語(西藏大學(xué))知到智慧樹章節(jié)答案
- 2024電子商務(wù)平臺(tái)用戶隱私保護(hù)協(xié)議3篇
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 英語 含答案
- 電力工程施工安全風(fēng)險(xiǎn)評(píng)估與防控
- 醫(yī)學(xué)教程 常見體表腫瘤與腫塊課件
- 內(nèi)分泌系統(tǒng)異常與虛勞病關(guān)系
- 智聯(lián)招聘在線測(cè)評(píng)題
- DB3418T 008-2019 宣紙潤(rùn)墨性感官評(píng)判方法
- 【魔鏡洞察】2024藥食同源保健品滋補(bǔ)品行業(yè)分析報(bào)告
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗(yàn)人員理論考試題及答案
評(píng)論
0/150
提交評(píng)論