2023-2024學(xué)年山東省巨野縣一中高考?jí)狠S卷數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年山東省巨野縣一中高考?jí)狠S卷數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年山東省巨野縣一中高考?jí)狠S卷數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年山東省巨野縣一中高考?jí)狠S卷數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年山東省巨野縣一中高考?jí)狠S卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年山東省巨野縣一中高考?jí)狠S卷數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]2.在正方體中,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,且兩球相切于點(diǎn).若以為焦點(diǎn),為準(zhǔn)線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.3.已知一個(gè)三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.4.如圖,在中,點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn),點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn),則()A. B. C. D.5.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i6.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個(gè)數(shù)為()A. B. C. D.7.甲、乙、丙、丁四位同學(xué)高考之后計(jì)劃去三個(gè)不同社區(qū)進(jìn)行幫扶活動(dòng),每人只能去一個(gè)社區(qū),每個(gè)社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.58.過拋物線的焦點(diǎn)且與的對(duì)稱軸垂直的直線與交于,兩點(diǎn),,為的準(zhǔn)線上的一點(diǎn),則的面積為()A.1 B.2 C.4 D.89.中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.10.已知復(fù)數(shù),則()A. B. C. D.211.設(shè),滿足約束條件,若的最大值為,則的展開式中項(xiàng)的系數(shù)為()A.60 B.80 C.90 D.12012.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個(gè)頂點(diǎn)都在球Q的球面上,則球Q的半徑為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),且由的最大值是_________14.已知二面角α﹣l﹣β為60°,在其內(nèi)部取點(diǎn)A,在半平面α,β內(nèi)分別取點(diǎn)B,C.若點(diǎn)A到棱l的距離為1,則△ABC的周長的最小值為_____.15.已知向量與的夾角為,||=||=1,且⊥(λ),則實(shí)數(shù)_____.16.如圖,已知扇形的半徑為1,面積為,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失?。畷x級(jí)成功晉級(jí)失敗合計(jì)男16女50合計(jì)(1)求圖中的值;(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級(jí)失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02418.(12分)在中,角的對(duì)邊分別為,且,.(1)求的值;(2)若求的面積.19.(12分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.20.(12分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.21.(12分)手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級(jí)的概率;(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.22.(10分)某芯片公司對(duì)今年新開發(fā)的一批5G手機(jī)芯片進(jìn)行測(cè)評(píng),該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計(jì)數(shù)據(jù)分為五個(gè)小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評(píng)測(cè)分?jǐn)?shù)的平均數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替).(2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測(cè)試,該手機(jī)公司將每顆芯片分別裝在3個(gè)工程手機(jī)中進(jìn)行初測(cè)。若3個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬分,則認(rèn)定該芯片合格;若3個(gè)工程手機(jī)中只要有2個(gè)評(píng)分沒達(dá)到11萬分,則認(rèn)定該芯片不合格;若3個(gè)工程手機(jī)中僅1個(gè)評(píng)分沒有達(dá)到11萬分,則將該芯片再分別置于另外2個(gè)工程手機(jī)中進(jìn)行二測(cè),二測(cè)時(shí),2個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬分,則認(rèn)定該芯片合格;2個(gè)工程手機(jī)中只要有1個(gè)評(píng)分沒達(dá)到11萬分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)與手機(jī)公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個(gè)工程手機(jī)中的測(cè)試費(fèi)用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測(cè)試,現(xiàn)手機(jī)公司測(cè)試部門預(yù)算的測(cè)試經(jīng)費(fèi)為10萬元,試問預(yù)算經(jīng)費(fèi)是否足夠測(cè)試完這100顆芯片?請(qǐng)說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點(diǎn)睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.2、D【解析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點(diǎn)都在體對(duì)角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【詳解】根據(jù)拋物線的定義,點(diǎn)到點(diǎn)的距離與到直線的距離相等,其中點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個(gè)球心和兩球的切點(diǎn)均在體對(duì)角線上,兩個(gè)球在平面處的截面如圖所示,則,所以.又因?yàn)?,因此,得,所?故選:D【點(diǎn)睛】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運(yùn)算的核心素養(yǎng)3、B【解析】

根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長方體,于是得到三棱錐的外接球即為長方體的外接球,進(jìn)而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個(gè)頂點(diǎn)位于長方體的四個(gè)頂點(diǎn),即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當(dāng)且僅當(dāng),時(shí),三棱錐外接球的表面積取得最小值為.故選B.【點(diǎn)睛】(1)解決關(guān)于外接球的問題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離都等于球的半徑,同時(shí)要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對(duì)角線,對(duì)于一些比較特殊的三棱錐,在研究其外接球的問題時(shí)可考慮通過構(gòu)造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.4、B【解析】

,將,代入化簡即可.【詳解】.故選:B.【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算、數(shù)乘運(yùn)算,考查學(xué)生的運(yùn)算能力,是一道中檔題.5、B【解析】

利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】

利用線線、線面、面面相應(yīng)的判定與性質(zhì)來解決.【詳解】如果兩條平行線中一條垂直于這個(gè)平面,那么另一條也垂直于這個(gè)平面知①正確;當(dāng)直線平行于平面與平面的交線時(shí)也有,,故②錯(cuò)誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因?yàn)椋?,從而,故④正確.故選:C.【點(diǎn)睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.7、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(?。〤(丙);A(甲,丙)B(?。〤(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.8、C【解析】

設(shè)拋物線的解析式,得焦點(diǎn)為,對(duì)稱軸為軸,準(zhǔn)線為,這樣可設(shè)點(diǎn)坐標(biāo)為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設(shè)拋物線的解析式,則焦點(diǎn)為,對(duì)稱軸為軸,準(zhǔn)線為,∵直線經(jīng)過拋物線的焦點(diǎn),,是與的交點(diǎn),又軸,∴可設(shè)點(diǎn)坐標(biāo)為,代入,解得,又∵點(diǎn)在準(zhǔn)線上,設(shè)過點(diǎn)的的垂線與交于點(diǎn),,∴.故應(yīng)選C.【點(diǎn)睛】本題考查拋物線的性質(zhì),解題時(shí)只要設(shè)出拋物線的標(biāo)準(zhǔn)方程,就能得出點(diǎn)坐標(biāo),從而求得參數(shù)的值.本題難度一般.9、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.10、C【解析】

根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.11、B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到,再利用二項(xiàng)式定理計(jì)算得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時(shí),的最大值為,故.展開式的通項(xiàng)為:,取得到項(xiàng)的系數(shù)為:.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃求最值,二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.12、A【解析】

設(shè)的中點(diǎn)為O先求出外接圓的半徑,設(shè),利用平面ABC,得,在及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點(diǎn)為O,因?yàn)椋酝饨訄A的圓心M在BO上.設(shè)此圓的半徑為r.因?yàn)?,所以,解?因?yàn)椋?設(shè),易知平面ABC,則.因?yàn)?,所以,即,解?所以球Q的半徑.故選:A【點(diǎn)睛】本題考查球的組合體,考查空間想象能力,考查計(jì)算求解能力,是中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡得,又實(shí)數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當(dāng)過點(diǎn)或點(diǎn)時(shí)取最小值,可得所以的最大值是【點(diǎn)睛】本題考查了二元最值問題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問題,對(duì)要求的二元二次表達(dá)式進(jìn)行化簡,然后求出最值問題,本題有一定難度。14、【解析】

作A關(guān)于平面α和β的對(duì)稱點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對(duì)稱性三角形ADC的周長為AB+AC+BC=MB+BC+CN,當(dāng)四點(diǎn)共線時(shí)長度最短,結(jié)合對(duì)稱性和余弦定理求解.【詳解】作A關(guān)于平面α和β的對(duì)稱點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對(duì)稱性三角形ABC的周長為AB+AC+BC=MB+BC+CN,當(dāng)M,B,C,N共線時(shí),周長最小為MN設(shè)平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點(diǎn)睛】此題考查求空間三角形邊長的最值,關(guān)鍵在于根據(jù)幾何性質(zhì)找出對(duì)稱關(guān)系,結(jié)合解三角形知識(shí)求解.15、1【解析】

根據(jù)條件即可得出,由即可得出,進(jìn)行數(shù)量積的運(yùn)算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點(diǎn)睛】考查向量數(shù)量積的運(yùn)算及計(jì)算公式,以及向量垂直的充要條件.16、【解析】

根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公式求出.【詳解】設(shè)角,則,,所以在等腰三角形中,,則.故答案為:.【點(diǎn)睛】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)列聯(lián)表見解析,有超過的把握認(rèn)為“晉級(jí)成功”與性別有關(guān);(3)分布列見解析,=3【解析】

(1)由頻率和為1,列出方程求的值;(2)由頻率分布直方圖求出晉級(jí)成功的頻率,計(jì)算晉級(jí)成功的人數(shù),填寫列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論;(3)由頻率分布直方圖知晉級(jí)失敗的頻率,將頻率視為概率,知隨機(jī)變量服從二項(xiàng)分布,計(jì)算對(duì)應(yīng)的概率值,寫出分布列,計(jì)算數(shù)學(xué)期望.【詳解】解:(1)由頻率分布直方圖各小長方形面積總和為1,可知,解得;(2)由頻率分布直方圖知,晉級(jí)成功的頻率為,所以晉級(jí)成功的人數(shù)為(人),填表如下:晉級(jí)成功晉級(jí)失敗合計(jì)男163450女94150合計(jì)2575100假設(shè)“晉級(jí)成功”與性別無關(guān),根據(jù)上表數(shù)據(jù)代入公式可得,所以有超過的把握認(rèn)為“晉級(jí)成功”與性別有關(guān);(3)由頻率分布直方圖知晉級(jí)失敗的頻率為,將頻率視為概率,則從本次考試的所有人員中,隨機(jī)抽取1人進(jìn)行約談,這人晉級(jí)失敗的概率為0.75,所以可視為服從二項(xiàng)分布,即,,故,,,,.所以的分布列為:01234數(shù)學(xué)期望為.或().【點(diǎn)睛】本題考查了頻率分布直方圖和離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的應(yīng)用問題,屬于中檔題.若離散型隨機(jī)變量,則.18、(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角形中的數(shù)值關(guān)系得到,進(jìn)而求得數(shù)值;(2)由三角形的三個(gè)角的關(guān)系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面積.19、(1);(2).【解析】

(1)令可求得的值,令時(shí),由可得出,兩式相減可得的表達(dá)式,然后對(duì)是否滿足在時(shí)的表達(dá)式進(jìn)行檢驗(yàn),由此可得出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,對(duì)分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得結(jié)果.【詳解】(1),當(dāng)時(shí),;當(dāng)時(shí),由得,兩式相減得,.滿足.因此,數(shù)列的通項(xiàng)公式為;(2).①當(dāng)為奇數(shù)時(shí),;②當(dāng)為偶數(shù)時(shí),.綜上所述,.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)的求解,同時(shí)也考查了奇偶分組求和法,考查計(jì)算能力,屬于中等題.20、(1)1;(2)證明見解析.【解析】

(1)將不等式化為,求解得出,根據(jù)解集確定正數(shù)的值;(2)利用基本不等式以及不等式的性質(zhì),得出,,,三式相加,即可得證.【詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:由(1)知,原不等式可化為∵,∴,同理,三式相加得,當(dāng)且僅當(dāng)時(shí)取等號(hào)綜上.【點(diǎn)睛】本題主要考查了求絕對(duì)值不等式中參數(shù)的范圍以及基本不等式的應(yīng)用,屬于中檔題.21、(1);(2)①可能是2件;②詳見解析【解析】

(1)由一件手工藝品質(zhì)量為B級(jí)的情形,并結(jié)合相互獨(dú)立事件的概率公式,列式計(jì)算即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論