版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
MasterPlanPart3
SustainableEnergyforAllofEarth
MasterPlanPart3–SustainableEnergyforAllofEarth
TableofContents
ExecutiveSummary
03
TheCurrentEnergyEconomyisWasteful
04
ThePlantoEliminateFossilFuels
05
1.RepowertheExistingGridwithRenewables
05
2.SwitchtoElectricVehicles
05
3.SwitchtoHeatPumpsinResidential,Business&Industry
07
4.ElectrifyHighTemperatureHeatDeliveryandHydrogen
09
5.SustainablyFuelPlanes&Boats
12
6.ManufacturetheSustainableEnergyEconomy
12
ModelingTheFullySustainableEnergyEconomy
13
?EnergyStorageTechnologiesEvaluated
18
?GenerationTechnologiesEvaluated
19
ModelResults
20
?USOnlyModelResults–MeetingNewElectrificationDemand
20
?WorldModelResults–MeetingNewElectrificationDemand
21
?BatteriesforTransportation
22
?Vehicles
22
?ShipsandPlanes
23
?WorldModelResults–Electrification&BatteriesforTransportation
24
InvestmentRequired
26
LandAreaRequired
30
MaterialsRequired
31
Conclusion
37
Appendix
38
?Appendix:Generationandstorageallocationtoend-uses
38
?Appendix:BuildtheSustainableEnergyEconomy–EnergyIntensity
39
PublishedonApril5,2023
Acknowledgements
TeslaContributors
TeslaAdvisors
Weappreciatethemanypriorstudiesthathavepushedthetopicof
FelixMaire
DrewBaglino
asustainableenergyeconomyforward,theworkoftheInternational
MatthewFox
RohanMa
EnergyAgency(IEA),U.S.EnergyInformationAdministration(EIA),
MarkSimons
VineetMehta
U.S.DepartmentofEnergyNationalLaboratories,andtheinputfrom
TurnerCaldwell
variousnon-Teslaaffiliatedadvisors.
AlexYoo
EliahGilfenbaumAndrewUlvestad
02MasterPlanPart3–SustainableEnergyforAllofEarthT
ElectricitySupply
Constructaleast-costportfolioofelectricitygenerationandstorageresourcesthatsatisfieshourly
electricitydemand.
MaterialFeasibility&Investment
Determinethefeasibilityof
materialneedsfortheelectric
economyandmanufacturing
investmentnecessarytoenableit.
ExecutiveSummary
OnMarch1,2023,TeslapresentedMasterPlanPart3–aproposedpathtoreachasustainableglobalenergyeconomythroughend-useelectrificationandsustainableelectricitygenerationandstorage.Thispaperoutlinestheassumptions,sourcesand
calculationsbehindthatproposal.Inputandconversationarewelcome.
Theanalysishasthreemaincomponents:
ElectricityDemand
Forecasttheelectricitydemandofafullyelectrifiedeconomy
thatmeetsglobalenergyneedswithoutfossilfuels.
Figure1:Processoverview
Thispaperfindsasustainableenergyeconomyistechnicallyfeasibleandrequireslessinvestmentandlessmaterialextractionthancontinuingtoday’sunsustainableenergyeconomy.Whilemanypriorstudieshavecometoasimilarconclusion,thisstudyseekstopushthethinkingforwardrelatedtomaterialintensity,manufacturingcapacity,andmanufacturinginvestmentrequiredforatransitionacrossallenergysectorsworldwide.
240TWh
Storage
0.21%
LandAreaRequired
30TW
RenewablePower
10%
2022WorldGDP
1/2
TheEnergyRequired
$10T
ManufacturingInvestment
ZERO
InsurmountableResourceChallenges
Figure2:EstimatedResources&InvestmentsRequiredforMasterPlan3
03MasterPlanPart3–SustainableEnergyforAllofEarth
TheCurrentEnergyEconomyisWasteful
AccordingtotheInternationalEnergyAgency(IEA)2019WorldEnergyBalances,theglobalprimaryenergysupplyis165PWh/year,andtotalfossilfuelsupplyis134PWh/year
1
ab.37%(61PWh)isconsumedbeforemakingittotheendconsumer.Thisincludesthefossilfuelindustries’self-consumptionduringextraction/refining,andtransformationlossesduringelectricitygeneration.
Another27%(44PWh)islostbyinefficientend-usessuchasinternalcombustionenginevehiclesandnaturalgasfurnaces.Intotal,only36%(59PWh)oftheprimaryenergysupplyproducesusefulworkorheatfortheeconomy.AnalysisfromLawrenceLivermoreNationalLabshowssimilarlevelsofinefficiencyfortheglobalandUSenergysupply
2
,
3
.
Today’sEnergyEconomy(PWh/year)
Figure3:GlobalEnergyFlowbySector,IEA&Teslaanalysis
aThe2021and2022IEAWorldEnergyBalanceswerenotcompleteatthetimeofthiswork,andthe2020datasetshowedadecreaseinenergyconsumptionfrom2019,whichlikelywaspandemic-relatedandinconsistentwithenergyconsumptiontrends.
bExcludedcertainfuelsuppliesusedfornon-energypurposes,suchasfossilfuelsusedinplasticsmanufacturing.
04MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
Inanelectrifiedeconomywithsustainablygeneratedenergy,mostoftheupstreamlossesassociatedwithmining,refiningandburningfuelstocreateelectricityareeliminated,asarethedownstreamlossesassociatedwithnon-electricend-uses.Some
industrialprocesseswillrequiremoreenergyinput(producinggreenhydrogenforexample),andsomeminingandrefiningactivityneedstoincrease(relatedtometalsforbatteries,solarpanels,windturbines,etc.)
Thefollowing6stepsshowtheactionsneededtofullyelectrifytheeconomyandeliminatefossilfueluse.The6stepsdetailtheelectricitydemandassumptionsforthesustainableenergyeconomyandleadstotheelectricitydemandcurvethatismodeled.
ModelingwasdoneontheUSenergyeconomyusinghigh-fidelitydataavailablefromtheEnergyInformationAdministration(EIA)from2019-2022c,andresultswerescaledtoestimateactionsneededfortheglobaleconomyusinga6xscalingfactor
basedonthe2019energyconsumptionscalarbetweentheU.S.andtheworld,accordingtoIEAEnergyBalances.Thisisa
significantsimplificationandcouldbeanareaforimprovementinfutureanalyses,asglobalenergydemandsaredifferentfromtheU.S.intheircompositionandexpectedtoincreaseovertime.ThisanalysiswasconductedontheU.S.duetoavailabilityofhigh-fidelityhourlydata.
Thisplanconsidersonshore/offshorewind,solar,existingnuclearandhydroassustainableelectricitygenerationsources,and
considersexistingbiomassassustainablealthoughitwilllikelybephasedoutovertime.Additionally,thisplandoesnotaddresssequesteringcarbondioxideemittedoverthepastcenturyoffossilfuelcombustion,beyondthedirectaircapturerequiredforsyntheticfuelgeneration;anyfutureimplementationofsuchtechnologieswouldlikelyincreaseglobalenergydemand.
01RepowertheExistingGridwithRenewables
TheexistingUShourlyelectricitydemandismodeledasaninflexiblebaselinedemandtakenfromtheEIA
4
.FourUSsub-regions(Texas,Pacific,Continental,Eastern)aremodeledtoaccountforregionalvariationsindemand,renewableresourceavailability,weather,andgridtransmissionconstraints.Thisexistingelectricaldemandisthebaselineloadthatmustbesupportedby
sustainablegenerationandstorage.
Globally,65PWh/yearofprimaryenergyissuppliedtotheelectricitysector,including46PWh/yearoffossilfuels;howeveronly26PWh/yearofelectricityisproduced,duetoinefficienciestransformingfossilfuelsintoelectricityd.Ifthegridwereinstead
renewablypowered,only26PWh/yearofsustainablegenerationwouldberequired.
02SwitchtoElectricVehicles
Electricvehiclesareapproximately4xmoreefficientthaninternalcombustionenginevehiclesduetohigherpowertrain
efficiency,regenerativebrakingcapability,andoptimizedplatformdesign.Thisratioholdstrueacrosspassengervehicles,light-dutytrucks,andClass8semisasshownintheTable1.
VehicleClass
ICEVehicleAvg
5
ElectricVehicles
EfficiencyRatio
PassengerCar
24.2MPG
115MPGe(292Wh.mi)e
4.8X
LightTruck/Van
17.5MPG
75MPGe(450Wh.mi)f
4.3X
Class8Truck
5.3MPG(diesel)
22MPGe(1.7kWh.mi)f
4.2X
Table1:ElectricvsInternalCombustionVehicleEfficiency
cUShourlytimeseriesdatausedasmodelinputsareavailableat
/opendata/browser/fordownload
.
dEmbeddedinthe26PWh/yearis3.5PWh/yearofusefulheat,mostlyproducedinco-generationpowerstations,whichgenerateheatandpowerelectricity.eTesla’sglobalfleetaverageenergyefficiencyincludingModel3,Y,SandX
fTesla’sinternalestimatebasedonindustryknowledge
05MasterPlanPart3–SustainableEnergyforAllofEarth
Consumption[Wh/mi]
ThePlantoEliminateFossilFuels
Asaspecificexample,Tesla’sModel3energyconsumptionis131MPGevs.aToyotaCorollawith34MPG
6
,7
,or3.9xlower,
andtheratioincreaseswhenaccountingforupstreamlossessuchastheenergyconsumptionrelatedextractingandrefiningfuel(SeeFigure4).
1200
driveconsumptionupstreamlosses
1000
800
600
400
200
0
ToyotaCorollaModel3
Figure4:ComparisonTeslaModel3vs.ToyotaCorolla
Toestablishtheelectricitydemandofanelectrifiedtransportationsector,historicalmonthlyUStransportationpetroleumusage,excludingaviationandoceanshipping,foreachsub-regionisscaledbytheEVefficiencyfactorabove(4x)
8
.Tesla’shourby
hourvehiclefleetchargingbehavior,splitbetweeninflexibleandflexibleportions,isassumedastheEVchargingloadcurveinthe100%electrifiedtransportationsector.Supercharging,commercialvehiclecharging,andvehicleswith<50%stateofchargeareconsideredinflexibledemand.HomeandworkplaceACchargingareflexibledemandandmodeledwitha72-hourenergy
conservationconstraint,modelingthefactthatmostdrivershaveflexibilitytochargewhenrenewableresourcesareabundant.Onaverage,Tesladriverschargeonceevery1.7daysfrom60%SOCto90%SOC,soEVshavesufficientrangerelativetotypicaldailymileagetooptimizetheirchargingaroundrenewablepoweravailabilityprovidedthereischarginginfrastructureatbothhomesandworkplaces.
Globalelectrificationofthetransportationsectoreliminates28PWh/yearoffossilfueluseand,applyingthe4xEVefficiencyfactor,creates~7PWh/yearofadditionalelectricaldemand.
06MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
03SwitchtoHeatPumpsinResidential,Business&Industry
Heatpumpsmoveheatfromsourcetosinkviathecompression/expansionofanintermediaterefrigerant
9
.Withtheappropriateselectionofrefrigerants,heatpumptechnologyappliestospaceheating,waterheatingandlaundrydriersinresidentialand
commercialbuildings,inadditiontomanyindustrialprocesses.
Air
Water
Ground
WasteHeat
HeatSource
Evaporation
ExpansionCompression
Condensation
HeatSink
Air
Water
Steam
HeatedMaterial
Figure5:HowHeatPumpsWork
10
Airsourceheatpumpsarethemostsuitabletechnologyforretrofittinggasfurnacesinexistinghomes,andcandeliver2.8unitsofheatperunitofenergyconsumedbasedonaheatingseasonalperformancefactor(HSPF)of9.5Btu/Wh,atypicalefficiencyratingforheat-pumpstoday
11
.Gasfurnacescreateheatbyburningnaturalgas.Theyhaveanannualfuelutilizationefficiency
(AFUE)of~90%
12
.Therefore,heatpumpsuse~3xlessenergythangasfurnaces(2.8/0.9).
07MasterPlanPart3–SustainableEnergyforAllofEarthT
InputEnergy/HeatDelivered
PercentofAverageLoad
ThePlantoEliminateFossilFuels
1.4
energyconsumptionupstreamlosses
1.2
1.0
0.8
0.6
0.4
0.2
0.0
GasFurnaceHeatPump
Figure6:Efficiencyimprovementofspaceheatingwithheatpumpvsgasfurnace
ResidentialandCommercialSectors
TheEIAprovideshistoricalmonthlyUSnaturalgasusagefortheresidentialandcommercialsectorsineachsub-region
8
.The3xheat-pumpefficiencyfactorreducestheenergydemandifallgasappliancesareelectrified.Thehourlyloadfactorofbaseline
electricitydemandwasappliedtoestimatethehourlyelectricitydemandvariationfromheatpumps,effectivelyascribing
heatingdemandtothosehourswhenhomesareactivelybeingheatedorcooled.Insummer,theresidential/commercialdemandpeaksmid-afternoonwhencoolingloadsarehighest,inwinterdemandfollowsthewell-known“duck-curve”whichpeaksin
morning&evening.
Globalelectrificationofresidentialandcommercialapplianceswithheatpumpseliminates18PWh/yearoffossilfuelandcreates6PWh/yearofadditionalelectricaldemand.
140
Summer
Winter
130
120
110
100
90
80
70
05101520
TimeofDay[hr]
Figure7:Residential&commercialheating&coolingloadfactorvstimeofday
08MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
IndustrialSector
Industrialprocessesupto~200C,suchasfood,paper,textileandwoodindustriescanalsobenefitfromtheefficiencygains
offeredbyheatpumps
13
,althoughheatpumpefficiencydecreaseswithhighertemperaturedifferentials.Heatpumpintegrationisnuancedandexactefficienciesdependheavilyonthetemperatureoftheheatsourcethesystemisdrawingfrom(temperatureriseiskeyindeterminingfactorforheatpumpefficiency),assuchsimplifiedassumptionsforachievableCOPbytemperature
rangeareused:
Temperature/Application
COP
0-60CHeatPump
4.0
60-100CHeatPump
3.0
100-200CHeatPump
1.5
Table2:AssumedHeatPumpEfficiencyImprovementsbyTemperature
Basedonthetemperaturemake-upofindustrialheataccordingtotheIEAandtheassumedheatpumpefficiencybytemperatureinTable2,theweightedindustrialheatpumpefficiencyfactormodeledis2.2
14
,15
,16
.
TheEIAprovideshistoricalmonthlyfossilfuelusagefortheindustrialsectorforeachsub-region
8
.Allindustrialfossilfueluse,excludingembeddedfossilfuelsinproducts(rubber,lubricants,others)isassumedtobeusedforprocessheat.AccordingtotheIEA,45%ofprocessheatisbelow200C,andwhenelectrifiedwithheatpumpsrequires2.2xlessinputenergy
16
.Theaddedindustrialheat-pumpelectricaldemandwasmodeledasaninflexible,flathourlydemand.
Globalelectrificationofindustrialprocessheat<200Cwithheatpumpseliminates12PWh/yearoffossilfuelsandcreates5PWh/yearofadditionalelectricaldemand.
04ElectrifyHighTemperatureHeatDeliveryandHydrogenProduction
ElectrifyHighHeatIndustrialProcesses
Industrialprocessesthatrequirehightemperatures(>200C),accountfortheremaining55%offossilfueluseandrequirespecialconsideration.Thisincludessteel,chemical,fertilizerandcementproduction,amongothers.
Thesehigh-temperatureindustrialprocessescanbeserviceddirectlybyelectricresistanceheating,electricarcfurnacesor
bufferedthroughthermalstoragetotakeadvantageoflow-costrenewableenergywhenitisavailableinexcess.On-sitethermalstoragemaybevaluabletocosteffectivelyaccelerateindustrialelectrification(e.g.,directlyusingthethermalstoragemediaandradiativeheatingelements)
17
,18
.
09MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
Identifytheoptimalthermalstoragemediabytemperature/application
Charging=
heatingthermalstoragemediawithelectricity,steam,hotair,etc
ThermalBattery
Energy
=massthermal_battery
*heatcapacity*?T
Discharging=
coolingthermal
storagemediaby
heatingsomethingelse
Figure8:ThermalStorageOverview
DeliveringHeattoHighTemperatureProcesses
HotFluidsforDeliveryProcess
Steam
MoltenSalt(upto550C)
HotAir(upto2000+C)
FluidstobeHeated
Water
MoltenSalt
Air
WaterEvaporating
MoltenSaltHeating
AirHeating
Figure9A:ThermalStorage-HeatDeliverytoProcessviaHeatTransferFluids
RadiantHeatDirectlytoProduct
Figure9B:ThermalStorage-HeatDeliverytoProcessviaDirectRadiantHeating
Electricresistanceheating,andelectricarcfurnaces,havesimilarefficiencytoblastfurnaceheating,thereforewillrequirea
similaramountofrenewableprimaryenergyinput.Thesehigh-temperatureprocessesaremodeledasaninflexible,flatdemand.
Thermalstorageismodeledasanenergybufferforhigh-temperatureprocessheatintheindustrialsector,witharoundtrip
thermalefficiencyof95%.Inregionswithhighsolarinstalledcapacity,thermalstoragewilltendtochargemiddayanddischargeduringthenightstomeetcontinuous24/7industrialthermalneeds.Figure9showspossibleheatcarriersandillustratesthat
severalmaterialsarecandidatesforprovidingprocessheat>1500C.
Globalelectrificationofindustrialprocessheat>200Celiminates9PWh/yearoffossilfuelfuelsandcreates9PWh/yearofadditionalelectricaldemand,asequalheatdeliveryefficiencyisassumed.
10MasterPlanPart3–SustainableEnergyforAllofEarth
Temperature(C)
ThePlantoEliminateFossilFuels
3000
●Graphite/Carbon
.
AI203
.
Si02
.
Mullite
.
Steel
.
Sand
.
Alluminum
.
Concrete
.
MoltenSalt
.
ThermalOil
.
Water
2500
2000
1500
1000
500
0
500
1000
350040004500
1500200025003000
SpecificHeat(J/kgK)
Figure10:ThermalStorage-HeatStorageMedia
Note:Bubblediametersrepresentspecificheatoverusablerange.
SustainablyProduceHydrogenforSteelandFertilizer
Todayhydrogenisproducedfromcoal,oilandnaturalgas,andisusedintherefiningoffossilfuels(notablydiesel)andinvariousindustrialapplications(includingsteelandfertilizerproduction).
Greenhydrogencanbeproducedviatheelectrolysisofwater(highenergyintensity,nocarboncontainingproductsconsumed/produced)orviamethanepyrolysis(lowerenergyintensity,producesasolidcarbon-blackbyproductthatcouldbeconvertedintousefulcarbon-basedproducts)g.
Toconservativelyestimateelectricitydemandforgreenhydrogen,theassumptionis:
?Nohydrogenwillbeneededforfossilfuelrefininggoingforward
?SteelproductionwillbeconvertedtotheDirectReducedIronprocess,requiringhydrogenasaninput.Hydrogendemandtoreduceironore(assumedtobeFe3O4)isbasedonthefollowingreductionreaction:
ReductionbyH2
?FeO+H=3FeO+HO
342
2
?FeO+H=FeO+HO
22
?Allglobalhydrogenproductionwillcomefromelectrolysis
gSustainablesteelproductionmayalsobeperformedthroughmoltenoxideelectrolysis,whichrequiresheatandelectricity,butdoesnotrequirehydrogenasareducingagent,andmaybelessenergyintensive,butthisbenefitisbeyondthescopeoftheanalysis
19
.
11MasterPlanPart3–SustainableEnergyforAllofEarthT--
ThePlantoEliminateFossilFuels
Thesesimplifiedassumptionsforindustrialdemand,resultinaglobaldemandof150Mt/yrofgreenhydrogen,andsourcingthisfromelectrolysisrequiresanestimated~7.2PWh/yearofsustainablygeneratedelectricityh,
20
,
21
.
Theelectricaldemandforhydrogenproductionismodeledasaflexibleloadwithannualproductionconstraints,withhydrogenstoragepotentialmodeledintheformofundergroundgasstoragefacilities(likenaturalgasisstoredtoday)withmaximum
resourceconstraints.Undergroundgasstoragefacilitiesusedtodayfornaturalgasstoragecanberetrofittedforhydrogen
storage;themodeledU.S.hydrogenstoragerequires~30%ofexistin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年房產測量技術研發(fā)資助合同2篇
- 2024年度出版社打字員勞動合同范樣2篇
- 2025版高考數學一輪總復習應用創(chuàng)新題組11.1隨機事件古典概型與幾何概型
- 北京市2024-2025學年高一語文上學期11月期中試卷無答案
- 2024年版區(qū)塊鏈技術應用與開發(fā)合同2篇
- 2024年汕頭房地產買賣居間風險合同
- 2024年牛場養(yǎng)殖技術合作與承包合同3篇
- 河沙購銷合同
- 工程施工合作協議書
- 2024年度農業(yè)種植與鄉(xiāng)村旅游融合發(fā)展合作合同3篇
- 普通胃鏡早期胃癌的診斷PPT課件
- DG∕T 154-2022 熱風爐
- 鐵路建設項目施工企業(yè)信用評價辦法(鐵總建設〔2018〕124號)
- 模具報價表精簡模板
- 抽樣檢驗培訓教材(共47頁).ppt
- 時光科技主軸S系列伺服控制器說明書
- 通用帶式輸送機TD75或DT型出廠檢驗要求及記錄
- 高考英語單項選擇題題庫題
- lonely-planet-PDF-大全
- 成人大專畢業(yè)生自我鑒定
- 汽車轉向系統設計規(guī)范
評論
0/150
提交評論