特斯拉可持續(xù)性能源發(fā)展“宏圖計劃”第三篇章-2023-04-新勢力_第1頁
特斯拉可持續(xù)性能源發(fā)展“宏圖計劃”第三篇章-2023-04-新勢力_第2頁
特斯拉可持續(xù)性能源發(fā)展“宏圖計劃”第三篇章-2023-04-新勢力_第3頁
特斯拉可持續(xù)性能源發(fā)展“宏圖計劃”第三篇章-2023-04-新勢力_第4頁
特斯拉可持續(xù)性能源發(fā)展“宏圖計劃”第三篇章-2023-04-新勢力_第5頁
已閱讀5頁,還剩77頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

MasterPlanPart3

SustainableEnergyforAllofEarth

MasterPlanPart3–SustainableEnergyforAllofEarth

TableofContents

ExecutiveSummary

03

TheCurrentEnergyEconomyisWasteful

04

ThePlantoEliminateFossilFuels

05

1.RepowertheExistingGridwithRenewables

05

2.SwitchtoElectricVehicles

05

3.SwitchtoHeatPumpsinResidential,Business&Industry

07

4.ElectrifyHighTemperatureHeatDeliveryandHydrogen

09

5.SustainablyFuelPlanes&Boats

12

6.ManufacturetheSustainableEnergyEconomy

12

ModelingTheFullySustainableEnergyEconomy

13

?EnergyStorageTechnologiesEvaluated

18

?GenerationTechnologiesEvaluated

19

ModelResults

20

?USOnlyModelResults–MeetingNewElectrificationDemand

20

?WorldModelResults–MeetingNewElectrificationDemand

21

?BatteriesforTransportation

22

?Vehicles

22

?ShipsandPlanes

23

?WorldModelResults–Electrification&BatteriesforTransportation

24

InvestmentRequired

26

LandAreaRequired

30

MaterialsRequired

31

Conclusion

37

Appendix

38

?Appendix:Generationandstorageallocationtoend-uses

38

?Appendix:BuildtheSustainableEnergyEconomy–EnergyIntensity

39

PublishedonApril5,2023

Acknowledgements

TeslaContributors

TeslaAdvisors

Weappreciatethemanypriorstudiesthathavepushedthetopicof

FelixMaire

DrewBaglino

asustainableenergyeconomyforward,theworkoftheInternational

MatthewFox

RohanMa

EnergyAgency(IEA),U.S.EnergyInformationAdministration(EIA),

MarkSimons

VineetMehta

U.S.DepartmentofEnergyNationalLaboratories,andtheinputfrom

TurnerCaldwell

variousnon-Teslaaffiliatedadvisors.

AlexYoo

EliahGilfenbaumAndrewUlvestad

02MasterPlanPart3–SustainableEnergyforAllofEarthT

ElectricitySupply

Constructaleast-costportfolioofelectricitygenerationandstorageresourcesthatsatisfieshourly

electricitydemand.

MaterialFeasibility&Investment

Determinethefeasibilityof

materialneedsfortheelectric

economyandmanufacturing

investmentnecessarytoenableit.

ExecutiveSummary

OnMarch1,2023,TeslapresentedMasterPlanPart3–aproposedpathtoreachasustainableglobalenergyeconomythroughend-useelectrificationandsustainableelectricitygenerationandstorage.Thispaperoutlinestheassumptions,sourcesand

calculationsbehindthatproposal.Inputandconversationarewelcome.

Theanalysishasthreemaincomponents:

ElectricityDemand

Forecasttheelectricitydemandofafullyelectrifiedeconomy

thatmeetsglobalenergyneedswithoutfossilfuels.

Figure1:Processoverview

Thispaperfindsasustainableenergyeconomyistechnicallyfeasibleandrequireslessinvestmentandlessmaterialextractionthancontinuingtoday’sunsustainableenergyeconomy.Whilemanypriorstudieshavecometoasimilarconclusion,thisstudyseekstopushthethinkingforwardrelatedtomaterialintensity,manufacturingcapacity,andmanufacturinginvestmentrequiredforatransitionacrossallenergysectorsworldwide.

240TWh

Storage

0.21%

LandAreaRequired

30TW

RenewablePower

10%

2022WorldGDP

1/2

TheEnergyRequired

$10T

ManufacturingInvestment

ZERO

InsurmountableResourceChallenges

Figure2:EstimatedResources&InvestmentsRequiredforMasterPlan3

03MasterPlanPart3–SustainableEnergyforAllofEarth

TheCurrentEnergyEconomyisWasteful

AccordingtotheInternationalEnergyAgency(IEA)2019WorldEnergyBalances,theglobalprimaryenergysupplyis165PWh/year,andtotalfossilfuelsupplyis134PWh/year

1

ab.37%(61PWh)isconsumedbeforemakingittotheendconsumer.Thisincludesthefossilfuelindustries’self-consumptionduringextraction/refining,andtransformationlossesduringelectricitygeneration.

Another27%(44PWh)islostbyinefficientend-usessuchasinternalcombustionenginevehiclesandnaturalgasfurnaces.Intotal,only36%(59PWh)oftheprimaryenergysupplyproducesusefulworkorheatfortheeconomy.AnalysisfromLawrenceLivermoreNationalLabshowssimilarlevelsofinefficiencyfortheglobalandUSenergysupply

2

,

3

.

Today’sEnergyEconomy(PWh/year)

Figure3:GlobalEnergyFlowbySector,IEA&Teslaanalysis

aThe2021and2022IEAWorldEnergyBalanceswerenotcompleteatthetimeofthiswork,andthe2020datasetshowedadecreaseinenergyconsumptionfrom2019,whichlikelywaspandemic-relatedandinconsistentwithenergyconsumptiontrends.

bExcludedcertainfuelsuppliesusedfornon-energypurposes,suchasfossilfuelsusedinplasticsmanufacturing.

04MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

Inanelectrifiedeconomywithsustainablygeneratedenergy,mostoftheupstreamlossesassociatedwithmining,refiningandburningfuelstocreateelectricityareeliminated,asarethedownstreamlossesassociatedwithnon-electricend-uses.Some

industrialprocesseswillrequiremoreenergyinput(producinggreenhydrogenforexample),andsomeminingandrefiningactivityneedstoincrease(relatedtometalsforbatteries,solarpanels,windturbines,etc.)

Thefollowing6stepsshowtheactionsneededtofullyelectrifytheeconomyandeliminatefossilfueluse.The6stepsdetailtheelectricitydemandassumptionsforthesustainableenergyeconomyandleadstotheelectricitydemandcurvethatismodeled.

ModelingwasdoneontheUSenergyeconomyusinghigh-fidelitydataavailablefromtheEnergyInformationAdministration(EIA)from2019-2022c,andresultswerescaledtoestimateactionsneededfortheglobaleconomyusinga6xscalingfactor

basedonthe2019energyconsumptionscalarbetweentheU.S.andtheworld,accordingtoIEAEnergyBalances.Thisisa

significantsimplificationandcouldbeanareaforimprovementinfutureanalyses,asglobalenergydemandsaredifferentfromtheU.S.intheircompositionandexpectedtoincreaseovertime.ThisanalysiswasconductedontheU.S.duetoavailabilityofhigh-fidelityhourlydata.

Thisplanconsidersonshore/offshorewind,solar,existingnuclearandhydroassustainableelectricitygenerationsources,and

considersexistingbiomassassustainablealthoughitwilllikelybephasedoutovertime.Additionally,thisplandoesnotaddresssequesteringcarbondioxideemittedoverthepastcenturyoffossilfuelcombustion,beyondthedirectaircapturerequiredforsyntheticfuelgeneration;anyfutureimplementationofsuchtechnologieswouldlikelyincreaseglobalenergydemand.

01RepowertheExistingGridwithRenewables

TheexistingUShourlyelectricitydemandismodeledasaninflexiblebaselinedemandtakenfromtheEIA

4

.FourUSsub-regions(Texas,Pacific,Continental,Eastern)aremodeledtoaccountforregionalvariationsindemand,renewableresourceavailability,weather,andgridtransmissionconstraints.Thisexistingelectricaldemandisthebaselineloadthatmustbesupportedby

sustainablegenerationandstorage.

Globally,65PWh/yearofprimaryenergyissuppliedtotheelectricitysector,including46PWh/yearoffossilfuels;howeveronly26PWh/yearofelectricityisproduced,duetoinefficienciestransformingfossilfuelsintoelectricityd.Ifthegridwereinstead

renewablypowered,only26PWh/yearofsustainablegenerationwouldberequired.

02SwitchtoElectricVehicles

Electricvehiclesareapproximately4xmoreefficientthaninternalcombustionenginevehiclesduetohigherpowertrain

efficiency,regenerativebrakingcapability,andoptimizedplatformdesign.Thisratioholdstrueacrosspassengervehicles,light-dutytrucks,andClass8semisasshownintheTable1.

VehicleClass

ICEVehicleAvg

5

ElectricVehicles

EfficiencyRatio

PassengerCar

24.2MPG

115MPGe(292Wh.mi)e

4.8X

LightTruck/Van

17.5MPG

75MPGe(450Wh.mi)f

4.3X

Class8Truck

5.3MPG(diesel)

22MPGe(1.7kWh.mi)f

4.2X

Table1:ElectricvsInternalCombustionVehicleEfficiency

cUShourlytimeseriesdatausedasmodelinputsareavailableat

/opendata/browser/fordownload

.

dEmbeddedinthe26PWh/yearis3.5PWh/yearofusefulheat,mostlyproducedinco-generationpowerstations,whichgenerateheatandpowerelectricity.eTesla’sglobalfleetaverageenergyefficiencyincludingModel3,Y,SandX

fTesla’sinternalestimatebasedonindustryknowledge

05MasterPlanPart3–SustainableEnergyforAllofEarth

Consumption[Wh/mi]

ThePlantoEliminateFossilFuels

Asaspecificexample,Tesla’sModel3energyconsumptionis131MPGevs.aToyotaCorollawith34MPG

6

,7

,or3.9xlower,

andtheratioincreaseswhenaccountingforupstreamlossessuchastheenergyconsumptionrelatedextractingandrefiningfuel(SeeFigure4).

1200

driveconsumptionupstreamlosses

1000

800

600

400

200

0

ToyotaCorollaModel3

Figure4:ComparisonTeslaModel3vs.ToyotaCorolla

Toestablishtheelectricitydemandofanelectrifiedtransportationsector,historicalmonthlyUStransportationpetroleumusage,excludingaviationandoceanshipping,foreachsub-regionisscaledbytheEVefficiencyfactorabove(4x)

8

.Tesla’shourby

hourvehiclefleetchargingbehavior,splitbetweeninflexibleandflexibleportions,isassumedastheEVchargingloadcurveinthe100%electrifiedtransportationsector.Supercharging,commercialvehiclecharging,andvehicleswith<50%stateofchargeareconsideredinflexibledemand.HomeandworkplaceACchargingareflexibledemandandmodeledwitha72-hourenergy

conservationconstraint,modelingthefactthatmostdrivershaveflexibilitytochargewhenrenewableresourcesareabundant.Onaverage,Tesladriverschargeonceevery1.7daysfrom60%SOCto90%SOC,soEVshavesufficientrangerelativetotypicaldailymileagetooptimizetheirchargingaroundrenewablepoweravailabilityprovidedthereischarginginfrastructureatbothhomesandworkplaces.

Globalelectrificationofthetransportationsectoreliminates28PWh/yearoffossilfueluseand,applyingthe4xEVefficiencyfactor,creates~7PWh/yearofadditionalelectricaldemand.

06MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

03SwitchtoHeatPumpsinResidential,Business&Industry

Heatpumpsmoveheatfromsourcetosinkviathecompression/expansionofanintermediaterefrigerant

9

.Withtheappropriateselectionofrefrigerants,heatpumptechnologyappliestospaceheating,waterheatingandlaundrydriersinresidentialand

commercialbuildings,inadditiontomanyindustrialprocesses.

Air

Water

Ground

WasteHeat

HeatSource

Evaporation

ExpansionCompression

Condensation

HeatSink

Air

Water

Steam

HeatedMaterial

Figure5:HowHeatPumpsWork

10

Airsourceheatpumpsarethemostsuitabletechnologyforretrofittinggasfurnacesinexistinghomes,andcandeliver2.8unitsofheatperunitofenergyconsumedbasedonaheatingseasonalperformancefactor(HSPF)of9.5Btu/Wh,atypicalefficiencyratingforheat-pumpstoday

11

.Gasfurnacescreateheatbyburningnaturalgas.Theyhaveanannualfuelutilizationefficiency

(AFUE)of~90%

12

.Therefore,heatpumpsuse~3xlessenergythangasfurnaces(2.8/0.9).

07MasterPlanPart3–SustainableEnergyforAllofEarthT

InputEnergy/HeatDelivered

PercentofAverageLoad

ThePlantoEliminateFossilFuels

1.4

energyconsumptionupstreamlosses

1.2

1.0

0.8

0.6

0.4

0.2

0.0

GasFurnaceHeatPump

Figure6:Efficiencyimprovementofspaceheatingwithheatpumpvsgasfurnace

ResidentialandCommercialSectors

TheEIAprovideshistoricalmonthlyUSnaturalgasusagefortheresidentialandcommercialsectorsineachsub-region

8

.The3xheat-pumpefficiencyfactorreducestheenergydemandifallgasappliancesareelectrified.Thehourlyloadfactorofbaseline

electricitydemandwasappliedtoestimatethehourlyelectricitydemandvariationfromheatpumps,effectivelyascribing

heatingdemandtothosehourswhenhomesareactivelybeingheatedorcooled.Insummer,theresidential/commercialdemandpeaksmid-afternoonwhencoolingloadsarehighest,inwinterdemandfollowsthewell-known“duck-curve”whichpeaksin

morning&evening.

Globalelectrificationofresidentialandcommercialapplianceswithheatpumpseliminates18PWh/yearoffossilfuelandcreates6PWh/yearofadditionalelectricaldemand.

140

Summer

Winter

130

120

110

100

90

80

70

05101520

TimeofDay[hr]

Figure7:Residential&commercialheating&coolingloadfactorvstimeofday

08MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

IndustrialSector

Industrialprocessesupto~200C,suchasfood,paper,textileandwoodindustriescanalsobenefitfromtheefficiencygains

offeredbyheatpumps

13

,althoughheatpumpefficiencydecreaseswithhighertemperaturedifferentials.Heatpumpintegrationisnuancedandexactefficienciesdependheavilyonthetemperatureoftheheatsourcethesystemisdrawingfrom(temperatureriseiskeyindeterminingfactorforheatpumpefficiency),assuchsimplifiedassumptionsforachievableCOPbytemperature

rangeareused:

Temperature/Application

COP

0-60CHeatPump

4.0

60-100CHeatPump

3.0

100-200CHeatPump

1.5

Table2:AssumedHeatPumpEfficiencyImprovementsbyTemperature

Basedonthetemperaturemake-upofindustrialheataccordingtotheIEAandtheassumedheatpumpefficiencybytemperatureinTable2,theweightedindustrialheatpumpefficiencyfactormodeledis2.2

14

,15

,16

.

TheEIAprovideshistoricalmonthlyfossilfuelusagefortheindustrialsectorforeachsub-region

8

.Allindustrialfossilfueluse,excludingembeddedfossilfuelsinproducts(rubber,lubricants,others)isassumedtobeusedforprocessheat.AccordingtotheIEA,45%ofprocessheatisbelow200C,andwhenelectrifiedwithheatpumpsrequires2.2xlessinputenergy

16

.Theaddedindustrialheat-pumpelectricaldemandwasmodeledasaninflexible,flathourlydemand.

Globalelectrificationofindustrialprocessheat<200Cwithheatpumpseliminates12PWh/yearoffossilfuelsandcreates5PWh/yearofadditionalelectricaldemand.

04ElectrifyHighTemperatureHeatDeliveryandHydrogenProduction

ElectrifyHighHeatIndustrialProcesses

Industrialprocessesthatrequirehightemperatures(>200C),accountfortheremaining55%offossilfueluseandrequirespecialconsideration.Thisincludessteel,chemical,fertilizerandcementproduction,amongothers.

Thesehigh-temperatureindustrialprocessescanbeserviceddirectlybyelectricresistanceheating,electricarcfurnacesor

bufferedthroughthermalstoragetotakeadvantageoflow-costrenewableenergywhenitisavailableinexcess.On-sitethermalstoragemaybevaluabletocosteffectivelyaccelerateindustrialelectrification(e.g.,directlyusingthethermalstoragemediaandradiativeheatingelements)

17

,18

.

09MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

Identifytheoptimalthermalstoragemediabytemperature/application

Charging=

heatingthermalstoragemediawithelectricity,steam,hotair,etc

ThermalBattery

Energy

=massthermal_battery

*heatcapacity*?T

Discharging=

coolingthermal

storagemediaby

heatingsomethingelse

Figure8:ThermalStorageOverview

DeliveringHeattoHighTemperatureProcesses

HotFluidsforDeliveryProcess

Steam

MoltenSalt(upto550C)

HotAir(upto2000+C)

FluidstobeHeated

Water

MoltenSalt

Air

WaterEvaporating

MoltenSaltHeating

AirHeating

Figure9A:ThermalStorage-HeatDeliverytoProcessviaHeatTransferFluids

RadiantHeatDirectlytoProduct

Figure9B:ThermalStorage-HeatDeliverytoProcessviaDirectRadiantHeating

Electricresistanceheating,andelectricarcfurnaces,havesimilarefficiencytoblastfurnaceheating,thereforewillrequirea

similaramountofrenewableprimaryenergyinput.Thesehigh-temperatureprocessesaremodeledasaninflexible,flatdemand.

Thermalstorageismodeledasanenergybufferforhigh-temperatureprocessheatintheindustrialsector,witharoundtrip

thermalefficiencyof95%.Inregionswithhighsolarinstalledcapacity,thermalstoragewilltendtochargemiddayanddischargeduringthenightstomeetcontinuous24/7industrialthermalneeds.Figure9showspossibleheatcarriersandillustratesthat

severalmaterialsarecandidatesforprovidingprocessheat>1500C.

Globalelectrificationofindustrialprocessheat>200Celiminates9PWh/yearoffossilfuelfuelsandcreates9PWh/yearofadditionalelectricaldemand,asequalheatdeliveryefficiencyisassumed.

10MasterPlanPart3–SustainableEnergyforAllofEarth

Temperature(C)

ThePlantoEliminateFossilFuels

3000

●Graphite/Carbon

.

AI203

.

Si02

.

Mullite

.

Steel

.

Sand

.

Alluminum

.

Concrete

.

MoltenSalt

.

ThermalOil

.

Water

2500

2000

1500

1000

500

0

500

1000

350040004500

1500200025003000

SpecificHeat(J/kgK)

Figure10:ThermalStorage-HeatStorageMedia

Note:Bubblediametersrepresentspecificheatoverusablerange.

SustainablyProduceHydrogenforSteelandFertilizer

Todayhydrogenisproducedfromcoal,oilandnaturalgas,andisusedintherefiningoffossilfuels(notablydiesel)andinvariousindustrialapplications(includingsteelandfertilizerproduction).

Greenhydrogencanbeproducedviatheelectrolysisofwater(highenergyintensity,nocarboncontainingproductsconsumed/produced)orviamethanepyrolysis(lowerenergyintensity,producesasolidcarbon-blackbyproductthatcouldbeconvertedintousefulcarbon-basedproducts)g.

Toconservativelyestimateelectricitydemandforgreenhydrogen,theassumptionis:

?Nohydrogenwillbeneededforfossilfuelrefininggoingforward

?SteelproductionwillbeconvertedtotheDirectReducedIronprocess,requiringhydrogenasaninput.Hydrogendemandtoreduceironore(assumedtobeFe3O4)isbasedonthefollowingreductionreaction:

ReductionbyH2

?FeO+H=3FeO+HO

342

2

?FeO+H=FeO+HO

22

?Allglobalhydrogenproductionwillcomefromelectrolysis

gSustainablesteelproductionmayalsobeperformedthroughmoltenoxideelectrolysis,whichrequiresheatandelectricity,butdoesnotrequirehydrogenasareducingagent,andmaybelessenergyintensive,butthisbenefitisbeyondthescopeoftheanalysis

19

.

11MasterPlanPart3–SustainableEnergyforAllofEarthT--

ThePlantoEliminateFossilFuels

Thesesimplifiedassumptionsforindustrialdemand,resultinaglobaldemandof150Mt/yrofgreenhydrogen,andsourcingthisfromelectrolysisrequiresanestimated~7.2PWh/yearofsustainablygeneratedelectricityh,

20

,

21

.

Theelectricaldemandforhydrogenproductionismodeledasaflexibleloadwithannualproductionconstraints,withhydrogenstoragepotentialmodeledintheformofundergroundgasstoragefacilities(likenaturalgasisstoredtoday)withmaximum

resourceconstraints.Undergroundgasstoragefacilitiesusedtodayfornaturalgasstoragecanberetrofittedforhydrogen

storage;themodeledU.S.hydrogenstoragerequires~30%ofexistin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論