江西省南昌市進賢縣達標(biāo)名校2024屆中考數(shù)學(xué)四模試卷含解析_第1頁
江西省南昌市進賢縣達標(biāo)名校2024屆中考數(shù)學(xué)四模試卷含解析_第2頁
江西省南昌市進賢縣達標(biāo)名校2024屆中考數(shù)學(xué)四模試卷含解析_第3頁
江西省南昌市進賢縣達標(biāo)名校2024屆中考數(shù)學(xué)四模試卷含解析_第4頁
江西省南昌市進賢縣達標(biāo)名校2024屆中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江西省南昌市進賢縣達標(biāo)名校2024屆中考數(shù)學(xué)四模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,四邊形ABCD是正方形,點P,Q分別在邊AB,BC的延長線上且BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②△OAE∽△OPA;③當(dāng)正方形的邊長為3,BP=1時,cos∠DFO=,其中正確結(jié)論的個數(shù)是()A.0 B.1 C.2 D.32.若與互為相反數(shù),則x的值是()A.1 B.2 C.3 D.43.如圖,已知是的角平分線,是的垂直平分線,,,則的長為()A.6 B.5 C.4 D.4.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數(shù)515x對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差5.某市2017年實現(xiàn)生產(chǎn)總值達280億的目標(biāo),用科學(xué)記數(shù)法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10106.下列計算正確的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a(chǎn)2p÷a﹣p=a3p7.若矩形的長和寬是方程x2-7x+12=0的兩根,則矩形的對角線長度為()A.5 B.7 C.8 D.108.如果兩圓只有兩條公切線,那么這兩圓的位置關(guān)系是()A.內(nèi)切 B.外切 C.相交 D.外離9.估計的運算結(jié)果應(yīng)在哪個兩個連續(xù)自然數(shù)之間()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣410.據(jù)悉,超級磁力風(fēng)力發(fā)電機可以大幅度提升風(fēng)力發(fā)電效率,但其造價高昂,每座磁力風(fēng)力發(fā)電機,其建造花費估計要5300萬美元,“5300萬”用科學(xué)記數(shù)法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×108二、填空題(共7小題,每小題3分,滿分21分)11.若分式方程有增根,則m的值為______.12.如圖1,在Rt△ABC中,∠ACB=90°,點P以每秒2cm的速度從點A出發(fā),沿折線AC﹣CB運動,到點B停止.過點P作PD⊥AB,垂足為D,PD的長y(cm)與點P的運動時間x(秒)的函數(shù)圖象如圖2所示.當(dāng)點P運動5秒時,PD的長的值為_____.13.在平面直角坐標(biāo)系中,點A的坐標(biāo)為(a,3),點B的坐標(biāo)是(4,b),若點A與點B關(guān)于原點O對稱,則ab=_____.14.方程組的解是________.15.將點P(﹣1,3)繞原點順時針旋轉(zhuǎn)180°后坐標(biāo)變?yōu)開____.16.小明用一個半徑為30cm且圓心角為240°的扇形紙片做成一個圓錐形紙帽(粘合部分忽略不計),那么這個圓錐形紙帽的底面半徑為_____cm.17.已知:a(a+2)=1,則a2+=_____.三、解答題(共7小題,滿分69分)18.(10分)有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小懷根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.下面是小懷的探究過程,請補充完成:(1)函數(shù)的自變量x的取值范圍是;(2)列出y與x的幾組對應(yīng)值.請直接寫出m的值,m=;(3)請在平面直角坐標(biāo)系xOy中,描出表中各對對應(yīng)值為坐標(biāo)的點,并畫出該函數(shù)的圖象;(4)結(jié)合函數(shù)的圖象,寫出函數(shù)的一條性質(zhì).19.(5分)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點.如圖(2)①求∠CPD的度數(shù);②求證:P點為△ABC的費馬點.20.(8分)校園手機現(xiàn)象已經(jīng)受到社會的廣泛關(guān)注.某校的一個興趣小組對“是否贊成中學(xué)生帶手機進校園”的問題在該校校園內(nèi)進行了隨機調(diào)查.并將調(diào)查數(shù)據(jù)作出如下不完整的整理;看法頻數(shù)頻率贊成5無所謂0.1反對400.8(1)本次調(diào)查共調(diào)查了人;(直接填空)請把整理的不完整圖表補充完整;若該校有3000名學(xué)生,請您估計該校持“反對”態(tài)度的學(xué)生人數(shù).21.(10分)如圖,在平行四邊形ABCD中,DB⊥AB,點E是BC邊的中點,過點E作EF⊥CD,垂足為F,交AB的延長線于點G.(1)求證:四邊形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.22.(10分)如圖,直線l是線段MN的垂直平分線,交線段MN于點O,在MN下方的直線l上取一點P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點C,連接BC.(1)設(shè)∠ONP=α,求∠AMN的度數(shù);(2)寫出線段AM、BC之間的等量關(guān)系,并證明.23.(12分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)24.(14分)有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數(shù)圖象,請結(jié)合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數(shù)解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

由四邊形ABCD是正方形,得到AD=BC,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP;故①正確;根據(jù)勾股定理求出直接用余弦可求出.【詳解】詳解:∵四邊形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正確;②無法證明,故錯誤.∵BP=1,AB=3,∴∴故③正確,故選C.【點睛】考查正方形的性質(zhì),三角形全等的判定與性質(zhì),勾股定理,銳角三角函數(shù)等,綜合性比較強,對學(xué)生要求較高.2、D【解析】由題意得+=0,去分母3x+4(1-x)=0,解得x=4.故選D.3、D【解析】

根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【點睛】本題考查了線段垂直平分線的性質(zhì),三角形內(nèi)角和定理,含30度角的直角三角形的性質(zhì),余弦等,結(jié)合圖形熟練應(yīng)用相關(guān)的性質(zhì)及定理是解題的關(guān)鍵.4、A【解析】

由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總?cè)藬?shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對于不同的x,關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計算方法是解題的關(guān)鍵.5、D【解析】

根據(jù)科學(xué)計數(shù)法的定義來表示數(shù)字,選出正確答案.【詳解】解:把一個數(shù)表示成a(1≤a<10,n為整數(shù))與10的冪相乘的形式,這種記數(shù)法叫做科學(xué)記數(shù)法,280億用科學(xué)計數(shù)法表示為2.8×1010,所以答案選D.【點睛】本題考查學(xué)生對科學(xué)計數(shù)法的概念的掌握和將數(shù)字用科學(xué)計數(shù)法表示的能力.6、D【解析】

直接利用合并同類項法則以及完全平方公式和整式的乘除運算法則分別計算即可得出答案.【詳解】解:A.﹣5x﹣2x=﹣7x,故此選項錯誤;B.(a+3)2=a2+6a+9,故此選項錯誤;C.(﹣a3)2=a6,故此選項錯誤;D.a(chǎn)2p÷a﹣p=a3p,正確.故選D.【點睛】本題主要考查了合并同類項以及完全平方公式和整式的乘除運算,正確掌握運算法則是解題的關(guān)鍵.7、A【解析】解:設(shè)矩形的長和寬分別為a、b,則a+b=7,ab=12,所以矩形的對角線長====1.故選A.8、C【解析】

兩圓內(nèi)含時,無公切線;兩圓內(nèi)切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【詳解】根據(jù)兩圓相交時才有2條公切線.故選C.【點睛】本題考查了圓與圓的位置關(guān)系.熟悉兩圓的不同位置關(guān)系中的外公切線和內(nèi)公切線的條數(shù).9、C【解析】根據(jù)二次根式的性質(zhì),可化簡得=﹣3=﹣2,然后根據(jù)二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之間.故選C.點睛:此題主要考查了二次根式的化簡和估算,關(guān)鍵是根據(jù)二次根式的性質(zhì)化簡計算,再二次根式的估算方法求解.10、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:5300萬=53000000=.故選C.【點睛】在把一個絕對值較大的數(shù)用科學(xué)記數(shù)法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數(shù)的整數(shù)位數(shù)少1(也可以通過小數(shù)點移位來確定).二、填空題(共7小題,每小題3分,滿分21分)11、-1【解析】

增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘(x-1),得x-1(x-1)=-m∵原方程增根為x=1,∴把x=1代入整式方程,得m=-1,故答案為:-1.【點睛】本題考查了分式方程的增根,增根確定后可按如下步驟進行:化分式方程為整式方程;把增根代入整式方程即可求得相關(guān)字母的值.12、2.4cm【解析】分析:根據(jù)圖2可判斷AC=3,BC=4,則可確定t=5時BP的值,利用sin∠B的值,可求出PD.詳解:由圖2可得,AC=3,BC=4,∴AB=.當(dāng)t=5時,如圖所示:,此時AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B==,∴PD=BP·sin∠B=2×==1.2(cm).故答案是:1.2cm.點睛:本題考查了動點問題的函數(shù)圖象,勾股定理,銳角三角函數(shù)等知識,解答本題的關(guān)鍵是根據(jù)圖形得到AC、BC的長度,此題難度一般.13、1【解析】【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出a,b的值,進而得出答案.【詳解】∵點A的坐標(biāo)為(a,3),點B的坐標(biāo)是(4,b),點A與點B關(guān)于原點O對稱,∴a=﹣4,b=﹣3,則ab=1,故答案為1.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),熟知關(guān)于原點對稱的兩點的橫、縱坐標(biāo)互為相反數(shù)是解題的關(guān)鍵.14、【解析】

利用加減消元法進行消元求解即可【詳解】解:由①+②,得3x=6x=2把x=2代入①,得2+3y=5y=1所以原方程組的解為:故答案為:【點睛】本題考查了二元一次方程組的解法,用適當(dāng)?shù)姆椒ń舛淮畏匠探M是解題的關(guān)鍵.15、(1,﹣3)【解析】

畫出平面直角坐標(biāo)系,然后作出點P繞原點O順時針旋轉(zhuǎn)180°的點P′的位置,再根據(jù)平面直角坐標(biāo)系寫出坐標(biāo)即可.【詳解】如圖所示:點P(-1,3)繞原點O順時針旋轉(zhuǎn)180°后的對應(yīng)點P′的坐標(biāo)為(1,-3).

故答案是:(1,-3).【點睛】考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),作出圖形,利用數(shù)形結(jié)合的思想求解更簡便,形象直觀.16、20【解析】

先求出半徑為30cm且圓心角為240°的扇形紙片的弧長,再利用底面周長=展開圖的弧長可得.【詳解】=40π.

設(shè)這個圓錐形紙帽的底面半徑為r.

根據(jù)題意,得40π=2πr,

解得r=20cm.故答案是:20.【點睛】解答本題的關(guān)鍵是有確定底面周長=展開圖的弧長這個等量關(guān)系,然后由扇形的弧長公式和圓的周長公式求值.17、3【解析】

先根據(jù)a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+進行計算.【詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.【點睛】本題考查的是代數(shù)式求解,熟練掌握代入法是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)x≠﹣1;(2)2;(2)見解析;(4)在x<﹣1和x>﹣1上均單調(diào)遞增;【解析】

(1)根據(jù)分母非零即可得出x+1≠0,解之即可得出自變量x的取值范圍;(2)將y=代入函數(shù)解析式中求出x值即可;(2)描點、連線畫出函數(shù)圖象;(4)觀察函數(shù)圖象,寫出函數(shù)的一條性質(zhì)即可.【詳解】解:(1)∵x+1≠0,∴x≠﹣1.故答案為x≠﹣1.(2)當(dāng)y==時,解得:x=2.故答案為2.(2)描點、連線畫出圖象如圖所示.(4)觀察函數(shù)圖象,發(fā)現(xiàn):函數(shù)在x<﹣1和x>﹣1上均單調(diào)遞增.【點睛】本題考查了反比例函數(shù)的性質(zhì)以及函數(shù)圖象,根據(jù)給定數(shù)據(jù)描點、連線畫出函數(shù)圖象是解題的關(guān)鍵.19、(1)①證明見解析;②23【解析】試題分析:(1)①根據(jù)題意,利用內(nèi)角和定理及等式性質(zhì)得到一對角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長代入求出PB的長即可;(2)①根據(jù)三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質(zhì)得到兩對邊相等,兩個角為60°,利用等式的性質(zhì)得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對應(yīng)角相等得到∠1=∠2,再由對頂角相等,得到∠5=∠6,即可求出所求角度數(shù);②由三角形ADF與三角形CPF相似,得到比例式,變形得到積的恒等式,再由對頂角相等,利用兩邊成比例,且夾角相等的三角形相似得到三角形AFP與三角形CFD相似,利用相似三角形對應(yīng)角相等得到∠APF為60°,由∠APD+∠DPC,求出∠APC為120°,進而確定出∠APB與∠BPC都為120°,即可得證.試題解析:(1)證明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴PAPB∴PB2=PA?PC=12,∴PB=23;(2)解:①∵△ABE與△ACD都為等邊三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,AC=AD∠EAC=∠BAD∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②證明:∵△ADF∽△CFP,∴AF?PF=DF?CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P點為△ABC的費馬點.考點:相似形綜合題20、(1)50;(2)見解析;(3)2400.【解析】

(1)用反對的頻數(shù)除以反對的頻率得到調(diào)查的總?cè)藬?shù);(2)求無所謂的人數(shù)和贊成的頻率即可把整理的不完整圖表補充完整;(3)根據(jù)題意列式計算即可.【詳解】解:(1)觀察統(tǒng)計表知道:反對的頻數(shù)為40,頻率為0.8,故調(diào)查的人數(shù)為:40÷0.8=50人;故答案為:50;(2)無所謂的頻數(shù)為:50﹣5﹣40=5人,贊成的頻率為:1﹣0.1﹣0.8=0.1;看法頻數(shù)頻率贊成50.1無所謂50.1反對400.8統(tǒng)計圖為:(3)0.8×3000=2400人,答:該校持“反對”態(tài)度的學(xué)生人數(shù)是2400人.【點睛】本題考查的是條形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).21、(1)見解析;(2)【解析】

(1)根據(jù)矩形的判定證明即可;(2)根據(jù)平行四邊形的性質(zhì)和等邊三角形的性質(zhì)解答即可.【詳解】證明:(1)∵BD⊥AB,EF⊥CD,∴∠ABD=90°,∠EFD=90°,根據(jù)題意,在?ABCD中,AB∥CD,∴∠BDC=∠ABD=90°,∴BD∥GF,∴四邊形BDFG為平行四邊形,∵∠BDC=90°,∴四邊形BDFG為矩形;(2)∵AE平分∠BAD,∴∠BAE=∠DAE,∵AD∥BC,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴BA=BE,∵在Rt△BCD中,點E為BC邊的中點,∴BE=ED=EC,∵在?ABCD中,AB=CD,∴△ECD為等邊三角形,∠C=60°,∴,∴.【點睛】本題考查了矩形的判定、等邊三角形的判定和性質(zhì),根據(jù)平行四邊形的性質(zhì)和等邊三角形的性質(zhì)解答是解題關(guān)鍵.22、(1)45°(2),理由見解析【解析】

(1)由線段的垂直平分線的性質(zhì)可得PM=PN,PO⊥MN,由等腰三角形的性質(zhì)可得∠PMN=∠PNM=α,由正方形的性質(zhì)可得AP=PN,∠APN=90°,可得∠APO=α,由三角形內(nèi)角和定理可求∠AMN的度數(shù);(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得,,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得.【詳解】解:(1)如圖,連接MP,∵直線l是線段MN的垂直平分線,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四邊形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)理由如下:如圖,連接AN,CN,∵直線l是線段MN的垂直平分線,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴,∵四邊形APNB是正方形∴∠ANB=∠BAN=45°∴,∠MNC=∠ANB=45°∴∠ANM=∠BNC又∵∴△CBN∽△MAN∴∴【點睛】本題考查了正方形的性質(zhì),線段垂直平分線的性質(zhì),相似三角形的判定和性質(zhì),添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.23、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】

(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F(xiàn),G分別為邊AB,BC,CD的中點,∴EF=AC,F(xiàn)G=BD,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論