版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省上猶縣重點名校2023-2024學年中考數(shù)學模擬預測題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=2x上,第二象限的點B在反比例函數(shù)y=kxA.﹣22 B.4 C.﹣4 D.222.化簡(﹣a2)?a5所得的結果是()A.a(chǎn)7 B.﹣a7 C.a(chǎn)10 D.﹣a103.如圖,AB∥CD,E為CD上一點,射線EF經(jīng)過點A,EC=EA.若∠CAE=30°,則∠BAF=()A.30°B.40°C.50°D.60°4.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱5.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤26.濟南市某天的氣溫:-5~8℃,則當天最高與最低的溫差為()A.13 B.3 C.-13 D.-37.在下列二次函數(shù)中,其圖象的對稱軸為的是A. B. C. D.8.在一次數(shù)學答題比賽中,五位同學答對題目的個數(shù)分別為7,5,3,5,10,則關于這組數(shù)據(jù)的說法不正確的是()A.眾數(shù)是5 B.中位數(shù)是5 C.平均數(shù)是6 D.方差是3.69.對于任意實數(shù)k,關于x的方程的根的情況為A.有兩個相等的實數(shù)根 B.沒有實數(shù)根C.有兩個不相等的實數(shù)根 D.無法確定10.根據(jù)如圖所示的程序計算函數(shù)y的值,若輸入的x值是4或7時,輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣7二、填空題(本大題共6個小題,每小題3分,共18分)11.已知,,,是成比例的線段,其中,,,則_______.12.方程的根為_____.13.若分式有意義,則實數(shù)x的取值范圍是_______.14.如圖,在正五邊形ABCDE中,AC與BE相交于點F,則∠AFE的度數(shù)為_____.15.如果a+b=2,那么代數(shù)式(a﹣)÷的值是______.16.如圖,的半徑為1,正六邊形內(nèi)接于,則圖中陰影部分圖形的面積和為________(結果保留).三、解答題(共8題,共72分)17.(8分)已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.求證:DE是⊙O的切線;若DE=6cm,AE=3cm,求⊙O的半徑.18.(8分)的除以20與18的差,商是多少?19.(8分)已知關于的方程mx2+(2m-1)x+m-1=0(m≠0).求證:方程總有兩個不相等的實數(shù)根;若方程的兩個實數(shù)根都是整數(shù),求整數(shù)的值.20.(8分)如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求證:四邊形ABCD是矩形;若DE=3,OE=9,求AB、AD的長.21.(8分)學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調查,把調查結果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調查結果繪制成兩幅不完整的統(tǒng)計圖(如圖1,2).請根據(jù)統(tǒng)計圖解答下列問題:本次調查中,王老師一共調查了名學生;將條形統(tǒng)計圖補充完整;為了共同進步,王老師從被調查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.22.(10分)計算:+2〡6tan3023.(12分)某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:202119162718312921222520192235331917182918352215181831311922整理上面數(shù)據(jù),得到條形統(tǒng)計圖:樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:統(tǒng)計量平均數(shù)眾數(shù)中位數(shù)數(shù)值23m21根據(jù)以上信息,解答下列問題:上表中眾數(shù)m的值為;為調動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應根據(jù)來確定獎勵標準比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).24.如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)的圖象于點B,AB=.求反比例函數(shù)的解析式;若P(,)、Q(,)是該反比例函數(shù)圖象上的兩點,且時,,指出點P、Q各位于哪個象限?并簡要說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:作AC⊥x軸于點C,作BD⊥x軸于點D.則∠BDO=∠ACO=90°,則∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故選C.考點:1.相似三角形的判定與性質;2.反比例函數(shù)圖象上點的坐標特征.2、B【解析】分析:根據(jù)同底數(shù)冪的乘法計算即可,計算時注意確定符號.詳解:(-a2)·a5=-a7.故選B.點睛:本題考查了同底數(shù)冪的乘法,熟練掌握同底數(shù)的冪相乘,底數(shù)不變,指數(shù)相加是解答本題的關鍵.3、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故選D.點睛:本題考查的是平行線的性質,熟知兩直線平行,同位角相等是解答此題的關鍵.4、A【解析】
由BD是∠ABC的角平分線,根據(jù)角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據(jù)兩直線平行,得到一對內(nèi)錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據(jù)等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質.學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內(nèi)錯角相等,借助轉化的數(shù)學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.5、A【解析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點的橫坐標均大于等于0.當Δ≤0時,[-2(b-2)]2-4(b2-1)≤0,解得b≥.當拋物線與x軸的交點的橫坐標均大于等于0時,設拋物線與x軸的交點的橫坐標分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無解,∴此種情況不存在.∴b≥.6、A【解析】由題意可知,當天最高溫與最低溫的溫差為8-(-5)=13℃,故選A.7、A【解析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯誤;y=–2x2–2的對稱軸為x=0,C錯誤;y=2(x–2)2的對稱軸為x=2,D錯誤.故選A.1.8、D【解析】
根據(jù)平均數(shù)、中位數(shù)、眾數(shù)以及方差的定義判斷各選項正誤即可.【詳解】A、數(shù)據(jù)中5出現(xiàn)2次,所以眾數(shù)為5,此選項正確;B、數(shù)據(jù)重新排列為3、5、5、7、10,則中位數(shù)為5,此選項正確;C、平均數(shù)為(7+5+3+5+10)÷5=6,此選項正確;D、方差為×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此選項錯誤;故選:D.【點睛】本題主要考查了方差、平均數(shù)、中位數(shù)以及眾數(shù)的知識,解答本題的關鍵是熟練掌握各個知識點的定義以及計算公式,此題難度不大.9、C【解析】判斷一元二次方程的根的情況,只要看根的判別式的值的符號即可:∵a=1,b=,c=,∴.∴此方程有兩個不相等的實數(shù)根.故選C.10、C【解析】
先求出x=7時y的值,再將x=4、y=-1代入y=2x+b可得答案.【詳解】∵當x=7時,y=6-7=-1,∴當x=4時,y=2×4+b=-1,解得:b=-9,故選C.【點睛】本題主要考查函數(shù)值,解題的關鍵是掌握函數(shù)值的計算方法.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
如果其中兩條線段的乘積等于另外兩條線段的乘積,則四條線段叫成比例線段.根據(jù)定義ad=cb,將a,b及c的值代入即可求得d.【詳解】已知a,b,c,d是成比例線段,根據(jù)比例線段的定義得:ad=cb,代入a=3,b=2,c=6,解得:d=4,則d=4cm.故答案為:4【點睛】本題主要考查比例線段的定義.要注意考慮問題要全面.12、﹣2或﹣7【解析】
把無理方程轉化為整式方程即可解決問題.【詳解】兩邊平方得到:13+2=25,∴=6,∴(x+11)(2-x)=36,解得x=-2或-7,經(jīng)檢驗x=-2或-7都是原方程的解.故答案為-2或-7【點睛】本題考查無理方程,解題的關鍵是學會把無理方程轉化為整式方程.13、【解析】由于分式的分母不能為2,x-1在分母上,因此x-1≠2,解得x.解:∵分式有意義,∴x-1≠2,即x≠1.故答案為x≠1.本題主要考查分式有意義的條件:分式有意義,分母不能為2.14、72°【解析】
首先根據(jù)正五邊形的性質得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點睛】本題考查的是正多邊形和圓,利用數(shù)形結合求解是解答此題的關鍵15、2【解析】分析:根據(jù)分式的運算法則即可求出答案.詳解:當a+b=2時,原式===a+b=2故答案為:2點睛:本題考查分式的運算,解題的關鍵熟練運用分式的運算法則,本題屬于基礎題型.16、.【解析】
連接OA,OB,OC,則根據(jù)正六邊形內(nèi)接于可知陰影部分的面積等于扇形OAB的面積,計算出扇形OAB的面積即可.【詳解】解:如圖所示,連接OA,OB,OC,∵正六邊形內(nèi)接于∴∠AOB=60°,四邊形OABC是菱形,∴AG=GC,OG=BG,∠AGO=∠BGC∴△AGO≌△BGC.∴△AGO的面積=△BGC的面積∵弓形DE的面積=弓形AB的面積∴陰影部分的面積=弓形DE的面積+△ABC的面積=弓形AB的面積+△AGB的面積+△BGC的面積=弓形AB的面積+△AGB的面積+△AGO的面積=扇形OAB的面積==故答案為.【點睛】本題考查了扇形的面積計算公式,利用數(shù)形結合進行轉化是解題的關鍵.三、解答題(共8題,共72分)17、解:(1)證明見解析;(2)⊙O的半徑是7.5cm.【解析】
(1)連接OD,根據(jù)平行線的判斷方法與性質可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.(2)由直角三角形的特殊性質,可得AD的長,又有△ACD∽△ADE.根據(jù)相似三角形的性質列出比例式,代入數(shù)據(jù)即可求得圓的半徑.【詳解】(1)證明:連接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD為⊙O的半徑,∴DE是⊙O的切線.(2)解:∵∠AED=90°,DE=6,AE=3,∴.連接CD.∵AC是⊙O的直徑,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.則AC=15(cm).∴⊙O的半徑是7.5cm.考點:切線的判定;平行線的判定與性質;圓周角定理;相似三角形的判定與性質.18、【解析】
根據(jù)題意可用乘的積除以20與18的差,所得的商就是所求的數(shù),列式解答即可.【詳解】解:×÷(20﹣18)【點睛】考查有理數(shù)的混合運算,列出式子是解題的關鍵.19、(1)證明見解析(2)m=1或m=-1【解析】試題分析:(1)由于m≠0,則計算判別式的值得到,從而可判斷方程總有兩個不相等的實數(shù)根;
(2)先利用求根公式得到然后利用有理數(shù)的整除性確定整數(shù)的值.試題解析:(1)證明:∵m≠0,∴方程為一元二次方程,∴此方程總有兩個不相等的實數(shù)根;(2)∵∵方程的兩個實數(shù)根都是整數(shù),且m是整數(shù),∴m=1或m=?1.20、(1)證明見解析;(2)AB、AD的長分別為2和1.【解析】
(1)證Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.證四邊形ABCD是平行四邊形,又,故四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.設AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.【詳解】(1)證明:∵AB⊥OM于B,DE⊥ON于E,∴.在Rt△ABO與Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL).∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四邊形ABCD是平行四邊形.∵,∴四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.設AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:,解得.∴AD=1.即AB、AD的長分別為2和1.【點睛】矩形的判定和性質;掌握判斷定證三角形全等是關鍵.21、(1)20;(2)作圖見試題解析;(3).【解析】
(1)由A類的學生數(shù)以及所占的百分比即可求得答案;(2)先求出C類的女生數(shù)、D類的男生數(shù),繼而可補全條形統(tǒng)計圖;(3)首先根據(jù)題意列出表格,再利用表格求得所有等可能的結果與恰好選中一名男生和一名女生的情況,繼而求得答案.【詳解】(1)根據(jù)題意得:王老師一共調查學生:(2+1)÷15%=20(名);故答案為20;(2)∵C類女生:20×25%﹣2=3(名);D類男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如圖:(3)列表如下:A類中的兩名男生分別記為A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6種等可能的結果,其中,一男一女的有3種,所以所選兩位同學恰好是一位男生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 會計數(shù)據(jù)分析 課件 第5章 現(xiàn)代審計和持續(xù)審計
- 2024 年松江區(qū)旅游企業(yè)服務質量顧客滿意度調研報告
- 5年中考3年模擬試卷初中生物八年級下冊第四節(jié)人的性別遺傳
- 學校校園及周邊治安安全隱患排查情況登記表
- 高中語文《記念劉和珍君》隨堂練習(含答案)
- 花城版六年級下冊音樂全冊教案
- 公共場所衛(wèi)生指標及限值要求
- DB11-T 2058-2022 建設項目環(huán)境影響評價技術指南 汽車維修
- 5G通信辦公大樓翻新招標
- 書法教室內(nèi)部設計合同模板
- 國開2023秋人文英語4形考任務5-8參考答案
- 永安財險廣東?。ú缓钲谑校┑胤截斦a貼海水網(wǎng)箱水產(chǎn)養(yǎng)殖風災指數(shù)保險條款
- 眾辰5400變頻器說明書
- 數(shù)學家華羅庚的故事課件
- 工程項目配資協(xié)議書
- 新版小學道德與法治課程標準的解讀與梳理培訓課件(道德與法治新課程標準培訓)
- 經(jīng)陰道無張力尿道中段吊帶術-TVT術
- 正頜外科與美學
- 中國當代影視文化智慧樹知到答案章節(jié)測試2023年浙江大學
- 學習解讀2023年工業(yè)產(chǎn)品生產(chǎn)單位落實質量安全主體責任監(jiān)督管理規(guī)定課件
評論
0/150
提交評論