云南省玉溪市元江民中2023-2024學年高考考前提分數(shù)學仿真卷含解析_第1頁
云南省玉溪市元江民中2023-2024學年高考考前提分數(shù)學仿真卷含解析_第2頁
云南省玉溪市元江民中2023-2024學年高考考前提分數(shù)學仿真卷含解析_第3頁
云南省玉溪市元江民中2023-2024學年高考考前提分數(shù)學仿真卷含解析_第4頁
云南省玉溪市元江民中2023-2024學年高考考前提分數(shù)學仿真卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省玉溪市元江民中2023-2024學年高考考前提分數(shù)學仿真卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設復數(shù)滿足,在復平面內對應的點為,則不可能為()A. B. C. D.2.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]3.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.4.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.35.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入的值為2,則輸出的值為A. B. C. D.6.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.7.已知,且,則的值為()A. B. C. D.8.函數(shù)f(x)=2x-3A.[32C.[329.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得10.集合的子集的個數(shù)是()A.2 B.3 C.4 D.811.已知符號函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]12.已知集合,集合,那么等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為矩形的對角線的交點,現(xiàn)從這5個點中任選3個點,則這3個點不共線的概率為________.14.已知橢圓C:1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點P(c,2c)作線段PF1,PF2分別交橢圓C于點A、B,若|PA|=|AF1|,則_____.15.在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為,則實數(shù)a的值為_____.16.已知函數(shù),,若函數(shù)有3個不同的零點x1,x2,x3(x1<x2<x3),則的取值范圍是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的單調區(qū)間;(2)若,證明.18.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質量,某城市環(huán)保局隨機抽取了一年內100天的空氣質量指數(shù)(AQI)的檢測數(shù)據,結果統(tǒng)計如表:AQI空氣質量優(yōu)良輕度污染中度污染重度污染重度污染天數(shù)61418272510(1)從空氣質量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質量造成的經濟損失y(單位:元)與空氣質量指數(shù)x的關系式為,假設該企業(yè)所在地7月與8月每天空氣質量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質量對應的概率以表中100天的空氣質量的頻率代替.(i)記該企業(yè)9月每天因空氣質量造成的經濟損失為X元,求X的分布列;(ii)試問該企業(yè)7月、8月、9月這三個月因空氣質量造成的經濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.19.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學參加該環(huán)節(jié)的比賽.(1)求甲同學至少抽到2道B類題的概率;(2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學恰好抽中2道A類題和1道B類題,用X表示甲同學答對題目的個數(shù),求隨機變量X的分布列和數(shù)學期望.20.(12分)在平面直角坐標系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標準方程;(2)設直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.21.(12分)設數(shù)陣,其中、、、.設,其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經過變換得到,再將經過變換得到、,以此類推,最后將經過變換得到”,記數(shù)陣中四個數(shù)的和為.(1)若,寫出經過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個數(shù)陣,證明:的所有可能取值的和不超過.22.(10分)如圖,直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點,直線y=p2與(1)求p的值;(2)設A是直線y=p2上一點,直線AM2交拋物線于另一點M3,直線M1M

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

依題意,設,由,得,再一一驗證.【詳解】設,因為,所以,經驗證不滿足,故選:D.【點睛】本題主要考查了復數(shù)的概念、復數(shù)的幾何意義,還考查了推理論證能力,屬于基礎題.2、D【解析】

由題意作出可行域,轉化目標函數(shù)為連接點和可行域內的點的直線斜率的倒數(shù),數(shù)形結合即可得解.【詳解】由題意作出可行域,如圖,目標函數(shù)可表示連接點和可行域內的點的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點睛】本題考查了非線性規(guī)劃的應用,屬于基礎題.3、B【解析】

由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數(shù)量積,點到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.4、A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.5、C【解析】

由題意,模擬程序的運行,依次寫出每次循環(huán)得到的,的值,當時,不滿足條件,跳出循環(huán),輸出的值.【詳解】解:初始值,,程序運行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【點睛】本題主要考查了循環(huán)結構的程序框圖的應用,正確依次寫出每次循環(huán)得到,的值是解題的關鍵,屬于基礎題.6、C【解析】

根據拋物線方程求得點的坐標,根據軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.7、A【解析】

由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數(shù)誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.8、A【解析】

根據冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因為函數(shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數(shù)fx的定義域為a,b,則函數(shù)fgx9、A【解析】

根據題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數(shù)的圖象和性質,意在考查學生對這些知識的理解掌握水平.10、D【解析】

先確定集合中元素的個數(shù),再得子集個數(shù).【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.11、A【解析】

根據符號函數(shù)的解析式,結合f(x)的單調性分析即可得解.【詳解】根據題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數(shù),當x>0時,x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時sgn[g(x)]=1,當x=0時,x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時sgn[g(x)]=0,當x<0時,x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點睛】此題考查函數(shù)新定義問題,涉及函數(shù)單調性辨析,關鍵在于讀懂定義,根據自變量的取值范圍分類討論.12、A【解析】

求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

基本事件總數(shù),這3個點共線的情況有兩種和,由此能求出這3個點不共線的概率.【詳解】解:為矩形的對角線的交點,現(xiàn)從,,,,這5個點中任選3個點,基本事件總數(shù),這3個點共線的情況有兩種和,這3個點不共線的概率為.故答案為:.【點睛】本題考查概率的求法,考查對立事件概率計算公式等基礎知識,考查運算求解能力,屬于基礎題.14、【解析】

根據條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點A為橢圓上頂點,則有b=c,解出B的坐標即可得到比值.【詳解】因為|PA|=|AF1|,所以點A是線段PF1的中點,又因為點O為線段F1F2的中點,所以OA∥PF2,且|PF2|=2|OA|,因為點P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以OA⊥x軸,則點A為橢圓上頂點,所以|OA|=b,則2b=2c,所以b=c,ac,設B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點睛】本題考查橢圓的基本性質,考查直線位置關系的判斷,方程思想,屬于中檔題.15、3【解析】

設直線AB的方程為y=kx+1,則直線AC的方程可設為yx+1,(k≠0),聯(lián)立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.【詳解】設直線AB的方程為y=kx+1,則直線AC的方程可設為yx+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐標(0,1),∴B的坐標為(,k?1),即B(,),因此AB?,同理可得:AC?.∴Rt△ABC的面積為SAB?AC?令t,得S.∵t2,∴S△ABC.當且僅當,即t時,△ABC的面積S有最大值為.解之得a=3或a.∵a時,t2不符合題意,∴a=3.故答案為:3.【點睛】本題考查了橢圓內三角形面積的最值問題,意在考查學生的計算能力和轉化能力.16、【解析】

先根據題意,求出的解得或,然后求出f(x)的導函數(shù),求其單調性以及最值,在根據題意求出函數(shù)有3個不同的零點x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個不同的零點,即+m=0有兩個不同的解,解之得即或因為的導函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個不同的零點,(1)有兩個不同的解,此時有一個解;(2)有兩個不同的解,此時有一個解當有兩個不同的解,此時有一個解,此時,不符合題意;或是不符合題意;所以只能是解得,此時=-m,此時有兩個不同的解,此時有一個解此時,不符合題意;或是不符合題意;所以只能是解得,此時=,綜上:的取值范圍是故答案為【點睛】本題主要考查了函數(shù)與導函數(shù)的綜合,考查到了函數(shù)的零點,導函數(shù)的應用,以及數(shù)形結合的思想、分類討論的思想,屬于綜合性極強的題目,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調遞減區(qū)間為,,無單調遞增區(qū)間(2)證明見解析【解析】

(1)求導,根據導數(shù)的正負判斷單調性,(2)整理,化簡為,令,求的單調性,以及,即證.【詳解】解:(1)函數(shù)定義域為,則,令,,則,當,,單調遞減;當,,單調遞增;故,,,,故函數(shù)的單調遞減區(qū)間為,,無單調遞增區(qū)間.(2)證明,即為,因為,即證,令,則,令,則,當時,,所以在上單調遞減,則,,則在上恒成立,所以在上單調遞減,所以要證原不等式成立,只需證當時,,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性,利用導數(shù)證明不等式,函數(shù)的最值問題,屬于中檔題.18、(1);(2)(i)詳見解析;(ii)會超過;詳見解析【解析】

(1)利用組合進行計算以及概率表示,可得結果.(2)(i)寫出X所有可能取值,并計算相對應的概率,列出表格可得結果.(ii)由(i)的條件結合7月與8月空氣質量所對應的概率,可得7月與8月經濟損失的期望和,最后7月、8月、9月經濟損失總額的數(shù)學期望與2.88萬元比較,可得結果.【詳解】(1)設ξ為選取的3天中空氣質量為優(yōu)的天數(shù),則P(ξ=2),P(ξ=3),則這3天中空氣質量至少有2天為優(yōu)的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業(yè)9月的經濟損失的數(shù)學期望為30E(X),即30E(X)=9060元,設7月、8月每天因空氣質量造成的經濟損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業(yè)7月、8月這兩個月因空氣質量造成經濟損失總額的數(shù)學期望為320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月這三個月因空氣質量造成經濟損失總額的數(shù)學期望會超過2.88萬元.【點睛】本題考查概率中的分布列以及數(shù)學期望,屬基礎題。19、(1);(2)分布列見解析,期望為.【解析】

(1)甲同學至少抽到2道B類題包含兩個事件:一個抽到2道B類題,一個是抽到3個B類題,計算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計算概率得分布列,再由期望公式計算期望.【詳解】(1)令“甲同學至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123【點睛】本題考查古典概型,考查隨機變量的概率分布列和數(shù)學期望.解題關鍵是掌握相互獨立事件同時發(fā)生的概率計算公式.20、(1);(2)①證明見解析;②【解析】

(1)由題意焦距為2,設點,代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標準方程.(2)①由題意,聯(lián)立直線與橢圓的方程,得,推導出,,,,由此猜想:直線過定點,從而能證明,,三點共線,直線過定點.②由題意設,,,,直線,代入橢圓標準方程:,得,推導出,,由此推導出(定值).【詳解】(1)由題意焦距為2,可設點,代入橢圓,得,解得,四邊形的面積,,,橢圓的標準方程為.(2)①由題意,聯(lián)立直線與橢圓的方程,得,,解得,從而,,,同理可得,,猜想:直線過定點,下證之:,,,,三點共線,直線過定點.②為定值,理由如下:由題意設,,,,直線,代入橢圓標準方程:,得,,,,(定值).【點睛】本題考查橢圓標準方程的求法,考查直線過定點的證明,考查兩直線的斜率的比值是否為定值的判斷與求法,考查橢圓、直線方程、韋達定理等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于中檔題.21、(1);(2);(3)見解析.【解析】

(1)由,能求出經過變換后得到的數(shù)陣;(2)由,,求出數(shù)陣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論