2023-2024學(xué)年山東省濟(jì)南市部分學(xué)校高考數(shù)學(xué)五模試卷含解析_第1頁(yè)
2023-2024學(xué)年山東省濟(jì)南市部分學(xué)校高考數(shù)學(xué)五模試卷含解析_第2頁(yè)
2023-2024學(xué)年山東省濟(jì)南市部分學(xué)校高考數(shù)學(xué)五模試卷含解析_第3頁(yè)
2023-2024學(xué)年山東省濟(jì)南市部分學(xué)校高考數(shù)學(xué)五模試卷含解析_第4頁(yè)
2023-2024學(xué)年山東省濟(jì)南市部分學(xué)校高考數(shù)學(xué)五模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年山東省濟(jì)南市部分學(xué)校高考數(shù)學(xué)五模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,且,則在方向上的投影為()A. B. C. D.2.設(shè),則(

)A.10 B.11 C.12 D.133.若,則的虛部是A.3 B. C. D.4.已知四棱錐中,平面,底面是邊長(zhǎng)為2的正方形,,為的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.5.已知向量,且,則m=()A.?8 B.?6C.6 D.86.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過(guò)計(jì)算機(jī)模擬在長(zhǎng)為10,寬為6的長(zhǎng)方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.7.已知將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱,則下述四個(gè)結(jié)論:①②③④點(diǎn)為函數(shù)的一個(gè)對(duì)稱中心其中所有正確結(jié)論的編號(hào)是()A.①②③ B.①③④ C.①②④ D.②③④8.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過(guò)點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.9.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個(gè)單位長(zhǎng)度B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度D.向右平移個(gè)單位長(zhǎng)度10.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.11.單位正方體ABCD-,黑、白兩螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩螞蟻的距離是()A.1 B. C. D.012.已知,則的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集為_(kāi)_______14.一個(gè)村子里一共有個(gè)人,其中一個(gè)人是謠言制造者,他編造了一條謠言并告訴了另一個(gè)人,這個(gè)人又把謠言告訴了第三個(gè)人,如此等等.在每一次謠言傳播時(shí),謠言的接受者都是在其余個(gè)村民中隨機(jī)挑選的,當(dāng)謠言傳播次之后,還沒(méi)有回到最初的造謠者的概率是_______.15.設(shè)第一象限內(nèi)的點(diǎn)(x,y)滿足約束條件,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_(kāi)____.16.“六藝”源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書、數(shù)”.某校在周末學(xué)生業(yè)余興趣活動(dòng)中開(kāi)展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂(lè)”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知正實(shí)數(shù)滿足.(1)求的最小值.(2)證明:18.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點(diǎn).(1)求證:平面平面;(2)點(diǎn)在線段上,且,求平面與平面所成的銳二面角的余弦值.19.(12分)已知直線與橢圓恰有一個(gè)公共點(diǎn),與圓相交于兩點(diǎn).(I)求與的關(guān)系式;(II)點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.若當(dāng)時(shí),的面積取到最大值,求橢圓的離心率.20.(12分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值21.(12分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.22.(10分)在中國(guó),不僅是購(gòu)物,而且從共享單車到醫(yī)院掛號(hào)再到公共繳費(fèi),日常生活中幾乎全部領(lǐng)域都支持手機(jī)支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國(guó)人民大學(xué)和法國(guó)調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機(jī)抽取了60名,統(tǒng)計(jì)他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機(jī)支付族”,其他為“非手機(jī)支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補(bǔ)充完整,并判斷有多大的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān)?(2)用樣本估計(jì)總體,若從騰訊服務(wù)的用戶中隨機(jī)抽取3位女性用戶,這3位用戶中“手機(jī)支付族”的人數(shù)為,求隨機(jī)變量的期望和方差;(3)某商場(chǎng)為了推廣手機(jī)支付,特推出兩種優(yōu)惠方案,方案一:手機(jī)支付消費(fèi)每滿1000元可直減100元;方案二:手機(jī)支付消費(fèi)每滿1000元可抽獎(jiǎng)2次,每次中獎(jiǎng)的概率同為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)一次打9折,中獎(jiǎng)兩次打8.5折.如果你打算用手機(jī)支付購(gòu)買某樣價(jià)值1200元的商品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由向量垂直的向量表示求出,再由投影的定義計(jì)算.【詳解】由可得,因?yàn)?,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.2、B【解析】

根據(jù)題中給出的分段函數(shù),只要將問(wèn)題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點(diǎn)睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.3、B【解析】

因?yàn)?,所以的虛部?故選B.4、B【解析】

由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長(zhǎng)為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線與所成角的余弦值為即為.故選:B.【點(diǎn)睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.5、D【解析】

由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.6、B【解析】

根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問(wèn)題求解,屬基礎(chǔ)題.7、B【解析】

首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對(duì)稱性求出、,即可求出的解析式,從而驗(yàn)證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對(duì)稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯(cuò)誤.故選:B【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.8、B【解析】

根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過(guò)點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.9、D【解析】

先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因?yàn)?,所以只需將的圖象向右平移個(gè)單位.【點(diǎn)睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.10、A【解析】

模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過(guò)程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題考查的是有關(guān)程序框圖的問(wèn)題,涉及到的知識(shí)點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.11、B【解析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過(guò)幾段后又回到起點(diǎn),得到每爬1步回到起點(diǎn),周期為1.計(jì)算黑螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn)以及計(jì)算白螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn),即可計(jì)算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過(guò)1段后又回到起點(diǎn),可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點(diǎn);同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點(diǎn),所以它們此時(shí)的距離為.故選B.【點(diǎn)睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題,考查空間想象與推理能力,屬于中等題.12、A【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對(duì)數(shù)函數(shù)的單調(diào)性,將與對(duì)比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對(duì)比,屬于基礎(chǔ)題..二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

通過(guò)平方,將無(wú)理不等式化為有理不等式求解即可。【詳解】由得,解得,所以解集是?!军c(diǎn)睛】本題主要考查無(wú)理不等式的解法。14、【解析】

利用相互獨(dú)立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會(huì)回到最初的人;從第2次傳播開(kāi)始,每1次謠言傳播,第一個(gè)制造謠言的人被選中的概率都是,沒(méi)有被選中的概率是.次傳播是相互獨(dú)立的,故為故答案為:【點(diǎn)睛】本題考查了相互獨(dú)立事件概率的乘法公式,考查了考生的分析能力,屬于基礎(chǔ)題.15、【解析】不等式表示的平面區(qū)域陰影部分,當(dāng)直線ax+by=z(a>0,b>0)過(guò)直線x?y+2=0與直線2x?y?6=0的交點(diǎn)(8,10)時(shí),目標(biāo)函數(shù)z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當(dāng)且僅當(dāng)時(shí)取等號(hào),則的最小值為.16、【解析】

分步排課,首先將“禮”與“樂(lè)”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個(gè)元素與其它兩個(gè)元素合起來(lái)全排列,同時(shí)它們內(nèi)部也全排列.【詳解】第一步:先將“禮”與“樂(lè)”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂(lè)”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點(diǎn)睛】本題考查排列的應(yīng)用,排列組合問(wèn)題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問(wèn)題用捆綁法,不相鄰問(wèn)題用插入法.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析【解析】

(1)利用乘“1”法,結(jié)合基本不等式求得結(jié)果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因?yàn)?,所以因?yàn)?,所以(?dāng)且僅當(dāng),即時(shí)等號(hào)成立),所以(2)證明:因?yàn)?,所以故(?dāng)且僅當(dāng)時(shí),等號(hào)成立)【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.18、(1)見(jiàn)解析(2)【解析】

(1)根據(jù)等邊三角形的性質(zhì)證得,根據(jù)面面垂直的性質(zhì)定理,證得底面,由此證得,結(jié)合證得平面,由此證得:平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點(diǎn),∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標(biāo)系,則,,,由已知,得,設(shè)平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(Ⅰ)(II)【解析】

(I)聯(lián)立直線與橢圓的方程,根據(jù)判別式等于0,即可求出結(jié)果;(Ⅱ)因點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,可得的面積是的面積的兩倍,再由當(dāng)時(shí),的面積取到最大值,可得,進(jìn)而可得原點(diǎn)到直線的距離,再由點(diǎn)到直線的距離公式,以及(I)的結(jié)果,即可求解.【詳解】(I)由,得,則化簡(jiǎn)整理,得;(Ⅱ)因點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,故的面積是的面積的兩倍.所以當(dāng)時(shí),的面積取到最大值,此時(shí),從而原點(diǎn)到直線的距離,又,故.再由(I),得,則.又,故,即,從而,即.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系,以及橢圓的簡(jiǎn)單性質(zhì),通常需要聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理、判別式等求解,屬于中檔試題.20、(1);(2)【解析】

(1)由得,兩式相減可得是從第二項(xiàng)開(kāi)始的等比數(shù)列,由此即可求出答案;(2),分類討論,當(dāng)時(shí),,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因?yàn)椋?,兩式相減得:,即,是從第二項(xiàng)開(kāi)始的等比數(shù)列,∵∴,則,;(2),當(dāng)時(shí),;當(dāng)時(shí),設(shè)遞增,,所以實(shí)數(shù)的最小值.【點(diǎn)睛】本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.21、【解析】

將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因?yàn)橄嗲?所以圓心到直線的距離等于半徑,即解得.【點(diǎn)睛】本題考查極坐標(biāo)方程與普通方程的互化,考查直線與圓的位置關(guān)系,是基礎(chǔ)題.22、(1)列聯(lián)表見(jiàn)解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】

(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨(dú)立性檢驗(yàn)得出結(jié)論;(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論