湖南省師范大附屬中學2023-2024學年中考數(shù)學四模試卷含解析_第1頁
湖南省師范大附屬中學2023-2024學年中考數(shù)學四模試卷含解析_第2頁
湖南省師范大附屬中學2023-2024學年中考數(shù)學四模試卷含解析_第3頁
湖南省師范大附屬中學2023-2024學年中考數(shù)學四模試卷含解析_第4頁
湖南省師范大附屬中學2023-2024學年中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省師范大附屬中學2023-2024學年中考數(shù)學四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下面的圖形是軸對稱圖形,又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個2.如圖,A、B兩點在雙曲線y=上,分別經(jīng)過A、B兩點向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.63.碳納米管的硬度與金剛石相當,卻擁有良好的柔韌性,可以拉伸,我國某物理所研究組已研制出直徑為0.5納米的碳納米管,1納米=0.000000001米,則0.5納米用科學記數(shù)法表示為()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米4.如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是弧AB的中點,連接AC、BC,則圖中陰影部分面積是()A. B.C. D.5.一個多邊形的內(nèi)角和比它的外角和的倍少180°,那么這個多邊形的邊數(shù)是()A.7 B.8 C.9 D.106.如圖,是的直徑,弦,垂足為點,點是上的任意一點,延長交的延長線于點,連接.若,則等于()A. B. C. D.7.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點.若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π8.下列圖標中,是中心對稱圖形的是()A. B.C. D.9.對于下列調(diào)查:①對從某國進口的香蕉進行檢驗檢疫;②審查某教科書稿;③中央電視臺“雞年春晚”收視率.其中適合抽樣調(diào)查的是()A.①②B.①③C.②③D.①②③10.菱形的兩條對角線長分別是6cm和8cm,則它的面積是()A.6cm2 B.12cm2 C.24cm2 D.48cm2二、填空題(共7小題,每小題3分,滿分21分)11.若關(guān)于x的方程x2-x+sinα=0有兩個相等的實數(shù)根,則銳角α的度數(shù)為___.12.某數(shù)學興趣小組在研究下列運算流程圖時發(fā)現(xiàn),取某個實數(shù)范圍內(nèi)的x作為輸入值,則永遠不會有輸出值,這個數(shù)學興趣小組所發(fā)現(xiàn)的實數(shù)x的取值范圍是_____.13.如圖,在正五邊形ABCDE中,AC與BE相交于點F,則∠AFE的度數(shù)為_____.14.如圖,矩形紙片ABCD中,AB=3,AD=5,點P是邊BC上的動點,現(xiàn)將紙片折疊使點A與點P重合,折痕與矩形邊的交點分別為E,F(xiàn),要使折痕始終與邊AB,AD有交點,BP的取值范圍是_____.15.若代數(shù)式有意義,則x的取值范圍是__.16.一個不透明的袋子中裝有5個球,其中3個紅球、2個黑球,這些球除顏色外無其它差別,現(xiàn)從袋子中隨機摸出一個球,則它是黑球的概率是_____.17.圓錐的底面半徑為2,母線長為6,則它的側(cè)面積為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖1,將長為10的線段OA繞點O旋轉(zhuǎn)90°得到OB,點A的運動軌跡為,P是半徑OB上一動點,Q是上的一動點,連接PQ.(1)當∠POQ=時,PQ有最大值,最大值為;(2)如圖2,若P是OB中點,且QP⊥OB于點P,求的長;(3)如圖3,將扇形AOB沿折痕AP折疊,使點B的對應(yīng)點B′恰好落在OA的延長線上,求陰影部分面積.19.(5分)如圖所示,在△ABC中,BO、CO是角平分線.∠ABC=50°,∠ACB=60°,求∠BOC的度數(shù),并說明理由.題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“∠A=70°”,求∠BOC的度數(shù).若∠A=n°,求∠BOC的度數(shù).20.(8分)如圖,點A、B在⊙O上,點O是⊙O的圓心,請你只用無刻度的直尺,分別畫出圖①和圖②中∠A的余角.(1)圖①中,點C在⊙O上;(2)圖②中,點C在⊙O內(nèi);21.(10分)綜合與探究:如圖1,拋物線y=﹣x2+x+與x軸分別交于A、B兩點(點A在點B的左側(cè)),與y軸交于C點.經(jīng)過點A的直線l與y軸交于點D(0,﹣).(1)求A、B兩點的坐標及直線l的表達式;(2)如圖2,直線l從圖中的位置出發(fā),以每秒1個單位的速度沿x軸的正方向運動,運動中直線l與x軸交于點E,與y軸交于點F,點A關(guān)于直線l的對稱點為A′,連接FA′、BA′,設(shè)直線l的運動時間為t(t>0)秒.探究下列問題:①請直接寫出A′的坐標(用含字母t的式子表示);②當點A′落在拋物線上時,求直線l的運動時間t的值,判斷此時四邊形A′BEF的形狀,并說明理由;(3)在(2)的條件下,探究:在直線l的運動過程中,坐標平面內(nèi)是否存在點P,使得以P,A′,B,E為頂點的四邊形為矩形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.22.(10分)先化簡,后求值:(1﹣)÷(),其中a=1.23.(12分)在平面直角坐標系中,拋物線經(jīng)過點A(-1,0)和點B(4,5).(1)求該拋物線的函數(shù)表達式.(2)求直線AB關(guān)于x軸對稱的直線的函數(shù)表達式.(3)點P是x軸上的動點,過點P作垂直于x軸的直線l,直線l與該拋物線交于點M,與直線AB交于點N.當PM<PN時,求點P的橫坐標的取值范圍.24.(14分)如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.(1)直接寫出點E的坐標(用含t的代數(shù)式表示):;(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)軸對稱圖形和中心對稱圖形的定義對各個圖形進行逐一分析即可.【詳解】解:第一個圖形是軸對稱圖形,但不是中心對稱圖形;第二個圖形是中心對稱圖形,但不是軸對稱圖形;第三個圖形既是軸對稱圖形,又是中心對稱圖形;第四個圖形即是軸對稱圖形,又是中心對稱圖形;∴既是軸對稱圖形,又是中心對稱圖形的有兩個,故選:B.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后兩部分重合.2、D【解析】

欲求S1+S1,只要求出過A、B兩點向x軸、y軸作垂線段與坐標軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數(shù)k,由此即可求出S1+S1.【詳解】∵點A、B是雙曲線y=上的點,分別經(jīng)過A、B兩點向x軸、y軸作垂線段,

則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個矩形的面積都等于|k|=4,

∴S1+S1=4+4-1×1=2.

故選D.3、D【解析】解:0.5納米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故選D.點睛:在負指數(shù)科學計數(shù)法中,其中,n等于第一個非0數(shù)字前所有0的個數(shù)(包括下數(shù)點前面的0).4、A【解析】試題分析:連接AB、OC,ABOC,所以可將四邊形AOBC分成三角形ABC、和三角形AOB,進行求面積,求得四邊形面積是,扇形面積是S=πr2=,所以陰影部分面積是扇形面積減去四邊形面積即.故選A.5、A【解析】

設(shè)這個正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設(shè)這個多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點睛】本題主要考查多邊形內(nèi)角與外角的知識點,此題要結(jié)合多邊形的內(nèi)角和與外角和,根據(jù)題目中的等量關(guān)系,構(gòu)建方程求解即可.6、B【解析】

連接BD,利用直徑得出∠ABD=65°,進而利用圓周角定理解答即可.【詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【點睛】此題考查圓周角定理,關(guān)鍵是利用直徑得出∠ABD=65°.7、A【解析】

根據(jù)圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.【點睛】本題考查的知識點是扇形面積的計算,解題關(guān)鍵是利用圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°.8、B【解析】

根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.9、B【解析】

根據(jù)普查得到的調(diào)查結(jié)果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似解答.【詳解】①對從某國進口的香蕉進行檢驗檢疫適合抽樣調(diào)查;②審查某教科書稿適合全面調(diào)查;③中央電視臺“雞年春晚”收視率適合抽樣調(diào)查.故選B.【點睛】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進行普查、普查的意義或價值不大,應(yīng)選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.10、C【解析】

已知對角線的長度,根據(jù)菱形的面積計算公式即可計算菱形的面積.【詳解】根據(jù)對角線的長可以求得菱形的面積,根據(jù)S=ab=×6cm×8cm=14cm1.故選:C.【點睛】考查菱形的面積公式,熟練掌握菱形面積的兩種計算方法是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、30°【解析】試題解析:∵關(guān)于x的方程有兩個相等的實數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.12、【解析】

通過找到臨界值解決問題.【詳解】由題意知,令3x-1=x,x=,此時無輸出值當x>時,數(shù)值越來越大,會有輸出值;當x<時,數(shù)值越來越小,不可能大于10,永遠不會有輸出值故x≤,故答案為x≤.【點睛】本題考查不等式的性質(zhì),解題的關(guān)鍵是理解題意,學會找到臨界值解決問題.13、72°【解析】

首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點睛】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵14、1≤x≤1【解析】

此題需要運用極端原理求解;①BP最小時,F(xiàn)、D重合,由折疊的性質(zhì)知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進而可求得BP的值,即BP的最小值;②BP最大時,E、B重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=1,即BP的最大值為1;【詳解】解:如圖:①當F、D重合時,BP的值最??;根據(jù)折疊的性質(zhì)知:AF=PF=5;在Rt△PFC中,PF=5,F(xiàn)C=1,則PC=4;∴BP=xmin=1;②當E、B重合時,BP的值最大;由折疊的性質(zhì)可得BP=AB=1.所以BP的取值范圍是:1≤x≤1.故答案為:1≤x≤1.【點睛】此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點的位置,是解決此題的關(guān)鍵.15、x3【解析】

由代數(shù)式有意義,得

x-30,

解得x3,

故答案為:x3.【點睛】本題考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:分式無意義:分母為零;分式有意義:分母不為零;分式值為零:分子為零且分母不為零.16、【解析】

用黑球的個數(shù)除以總球的個數(shù)即可得出黑球的概率.【詳解】解:∵袋子中共有5個球,有2個黑球,∴從袋子中隨機摸出一個球,它是黑球的概率為;故答案為.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.17、12π.【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積.解:根據(jù)圓錐的側(cè)面積公式:πrl=π×2×6=12π,故答案為12π.考點:圓錐的計算.三、解答題(共7小題,滿分69分)18、(1);(2);(3)【解析】

(1)先判斷出當PQ取最大時,點Q與點A重合,點P與點B重合,即可得出結(jié)論;(2)先判斷出∠POQ=60°,最后用弧長用弧長公式即可得出結(jié)論;(3)先在Rt△B'OP中,OP2+=,解得OP=,最后用面積的和差即可得出結(jié)論.【詳解】解:(1)∵P是半徑OB上一動點,Q是上的一動點,∴當PQ取最大時,點Q與點A重合,點P與點B重合,此時,∠POQ=90°,PQ=,故答案為:90°,10;(2)解:如圖,連接OQ,∵點P是OB的中點,∴OP=OB=OQ.∵QP⊥OB,∴∠OPQ=90°在Rt△OPQ中,cos∠QOP=,∴∠QOP=60°,∴l(xiāng)BQ;(3)由折疊的性質(zhì)可得,,在Rt△B'OP中,OP2+=,解得OP=,S陰影=S扇形AOB﹣2S△AOP=.【點睛】此題是圓的綜合題,主要考查了圓的性質(zhì),弧長公式,扇形的面積公式,熟記公式是解本題的關(guān)鍵.19、(1)125°;(2)125°;(3)∠BOC=90°+n°.【解析】

如圖,由BO、CO是角平分線得∠ABC=2∠1,∠ACB=2∠2,再利用三角形內(nèi)角和得到∠ABC+∠ACB+∠A=180°,則2∠1+2∠2+∠A=180°,接著再根據(jù)三角形內(nèi)角和得到∠1+∠2+∠BOC=180°,利用等式的性質(zhì)進行變換可得∠BOC=90°+∠A,然后根據(jù)此結(jié)論分別解決(1)、(2)、(3).【詳解】如圖,∵BO、CO是角平分線,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+×70°=125°;(2)∠BOC=90°+∠A=125°;(3)∠BOC=90°+n°.【點睛】本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和是180°.主要用在求三角形中角的度數(shù):①直接根據(jù)兩已知角求第三個角;②依據(jù)三角形中角的關(guān)系,用代數(shù)方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.20、圖形見解析【解析】試題分析:(1)根據(jù)同弧所對的圓周角相等和直徑所對的圓周角為直角畫圖即可;(2)延長AC交⊙O于點E,利用(1)的方法畫圖即可.試題解析:如圖①∠DBC就是所求的角;如圖②∠FBE就是所求的角21、(1)A(﹣1,0),B(3,0),y=﹣x﹣;(2)①A′(t﹣1,t);②A′BEF為菱形,見解析;(3)存在,P點坐標為(,)或(,﹣).【解析】

(1)通過解方程﹣x2+x+=0得A(?1,0),B(3,0),然后利用待定系數(shù)法確定直線l的解析式;(2)①作A′H⊥x軸于H,如圖2,利用OA=1,OD=得到∠OAD=60°,再利用平移和對稱的性質(zhì)得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根據(jù)含30度的直角三角形三邊的關(guān)系表示出A′H,EH即可得到A′的坐標;②把A′(t?1,t)代入y=?x2+x+得?(t?1)2+(t?1)+=t,解方程得到t=2,此時A′點的坐標為(2,),E(1,0),然后通過計算得到AF=BE=2,A′F∥BE,從而判斷四邊形A′BEF為平行四邊形,然后加上EF=BE可判定四邊形A′BEF為菱形;(3)討論:當A′B⊥BE時,四邊形A′BEP為矩形,利用點A′和點B的橫坐標相同得到t?1=3,解方程求出t得到A′(3,),再利用矩形的性質(zhì)可寫出對應(yīng)的P點坐標;當A′B⊥EA′,如圖4,四邊形A′BPE為矩形,作A′Q⊥x軸于Q,先確定此時A′點的坐標,然后利用點的平移確定對應(yīng)P點坐標.【詳解】(1)當y=0時,﹣x2+x+=0,解得x1=﹣1,x2=3,則A(﹣1,0),B(3,0),設(shè)直線l的解析式為y=kx+b,把A(﹣1,0),D(0,﹣)代入得,解得,∴直線l的解析式為y=﹣x﹣;(2)①作A′H⊥x軸于H,如圖,∵OA=1,OD=,∴∠OAD=60°,∵EF∥AD,∴∠AEF=60°,∵點A關(guān)于直線l的對稱點為A′,∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=EA′=t,A′H=EH=t,∴OH=OE+EH=t﹣1+t=t﹣1,∴A′(t﹣1,t);②把A′(t﹣1,t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,解得t1=0(舍去),t2=2,∴當點A′落在拋物線上時,直線l的運動時間t的值為2;此時四邊形A′BEF為菱形,理由如下:當t=2時,A′點的坐標為(2,),E(1,0),∵∠OEF=60°∴OF=OE=,EF=2OE=2,∴F(0,),∴A′F∥x軸,∵A′F=BE=2,A′F∥BE,∴四邊形A′BEF為平行四邊形,而EF=BE=2,∴四邊形A′BEF為菱形;(3)存在,如圖:當A′B⊥BE時,四邊形A′BEP為矩形,則t﹣1=3,解得t=,則A′(3,),∵OE=t﹣1=,∴此時P點坐標為(,);當A′B⊥EA′,如圖,四邊形A′BPE為矩形,作A′Q⊥x軸于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴BQ=A′Q=?t=t,∴t﹣1+t=3,解得t=,此時A′(1,),E(,0),點A′向左平移個單位,向下平移個單位得到點E,則點B(3,0)向左平移個單位,向下平移個單位得到點P,則P(,﹣),綜上所述,滿足條件的P點坐標為(,)或(,﹣).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)、菱形的判定和矩形的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質(zhì).22、,2.【解析】

先根據(jù)分式的混合運算順序和運算法則化簡原式,再將a的值代入計算可得.【詳解】解:原式=,當a=1時,原式==2.【點睛】本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式的混合運算順序和運算法則.23、(1)(2)(3)【解析】

(1)根據(jù)待定系數(shù)法,可得二次函數(shù)的解析式;(2)根據(jù)待定系數(shù)法,可得AB的解析式,根據(jù)關(guān)于x軸對稱的橫坐標相等,縱坐標互為相反數(shù),可得答案;(3)根據(jù)PM<PN,可得不等式,利用絕對值的性質(zhì)化簡解不等式,可得答案.【詳解】(1)將A(﹣1,1),B(2,5)代入函數(shù)解析式,得:,解得:,拋物線的解析式為y=x2﹣2x﹣3;(2)設(shè)AB的解析式為y=kx+b,將A(﹣1,1),B(2,5)代入函數(shù)解析式,得:,解得:,直線AB的解析式為y=x+1,直線AB關(guān)于x軸的對稱直線的表達式y(tǒng)=﹣(x+1),化簡,得:y=﹣x﹣1;(3)設(shè)M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論