人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第16講 拓展三:利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)(方程的根)(教師版)_第1頁
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第16講 拓展三:利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)(方程的根)(教師版)_第2頁
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第16講 拓展三:利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)(方程的根)(教師版)_第3頁
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第16講 拓展三:利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)(方程的根)(教師版)_第4頁
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第16講 拓展三:利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)(方程的根)(教師版)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第07講拓展三:利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)(方程的根)一、知識點(diǎn)歸納1、函數(shù)的零點(diǎn)(1)函數(shù)零點(diǎn)的定義:對于函數(shù)SKIPIF1<0,把使SKIPIF1<0的實(shí)數(shù)SKIPIF1<0叫做函數(shù)SKIPIF1<0的零點(diǎn).(2)三個等價關(guān)系方程SKIPIF1<0有實(shí)數(shù)根SKIPIF1<0函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸有交點(diǎn)的橫坐標(biāo)SKIPIF1<0函數(shù)SKIPIF1<0有零點(diǎn).2、函數(shù)零點(diǎn)的判定如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象是連續(xù)不斷的一條曲線,并且有SKIPIF1<0,那么函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有零點(diǎn),即存在SKIPIF1<0,使得SKIPIF1<0,這個SKIPIF1<0也就是SKIPIF1<0的根.我們把這一結(jié)論稱為函數(shù)零點(diǎn)存在性定理.注意:單調(diào)性+存在零點(diǎn)=唯一零點(diǎn)二、題型精講題型01判斷、證明或討論函數(shù)零點(diǎn)(方程的根)的個數(shù)1.(2022上·江蘇·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)設(shè)SKIPIF1<0,求SKIPIF1<0在區(qū)間SKIPIF1<0上的最值;(2)討論SKIPIF1<0的零點(diǎn)個數(shù).【答案】(1)最大值為SKIPIF1<0,最小值為SKIPIF1<0(2)SKIPIF1<0在SKIPIF1<0上有兩個零點(diǎn)【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取最大值SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0取最小值SKIPIF1<0.(2)先討論SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個數(shù),由(1)可知,SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn),又因?yàn)镾KIPIF1<0,所以SKIPIF1<0是偶函數(shù),所以SKIPIF1<0在SKIPIF1<0上有兩個零點(diǎn).2.(2022下·山東青島·高二山東省萊西市第一中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0,討論函數(shù)SKIPIF1<0的零點(diǎn)的個數(shù).【答案】答案見解析【詳解】由SKIPIF1<0得SKIPIF1<0,設(shè)SKIPIF1<0,

則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,此時SKIPIF1<0單調(diào)遞增,令SKIPIF1<0,得SKIPIF1<0,此時SKIPIF1<0單調(diào)遞減,即當(dāng)SKIPIF1<0時,g(x)取得極大值即SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0可得SKIPIF1<0與x軸只有一個交點(diǎn),由SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0可得SKIPIF1<0與x軸沒有交點(diǎn),畫出SKIPIF1<0的大致圖象如圖,可得m≤0或m=SKIPIF1<0時,SKIPIF1<0有1個零點(diǎn);當(dāng)0<m<SKIPIF1<0時,SKIPIF1<0有2個零點(diǎn);當(dāng)m>SKIPIF1<0時,SKIPIF1<0沒有零點(diǎn).綜上所述,當(dāng)m≤0或m=SKIPIF1<0時,SKIPIF1<0有1個零點(diǎn);當(dāng)0<m<SKIPIF1<0時,SKIPIF1<0有2個零點(diǎn);當(dāng)m>SKIPIF1<0時,SKIPIF1<0沒有零點(diǎn).3.(2022下·山東聊城·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0,在SKIPIF1<0處切線的斜率為-2.(1)求SKIPIF1<0的值及SKIPIF1<0的極小值;(2)討論方程SKIPIF1<0的實(shí)數(shù)解的個數(shù).【答案】(1)SKIPIF1<0,極小值為SKIPIF1<0;(2)答案見解析.【詳解】解:(1)SKIPIF1<0,因?yàn)樵赟KIPIF1<0處切線的斜率為-2,所以SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)x變化時,SKIPIF1<0,SKIPIF1<0變化情況如下:xSKIPIF1<0-2SKIPIF1<01SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<00SKIPIF1<0SKIPIF1<0單調(diào)遞增SKIPIF1<0單調(diào)遞減SKIPIF1<0單調(diào)遞增故SKIPIF1<0的極小值為SKIPIF1<0.(2)由(1)知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0上單調(diào)遞減,SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.當(dāng)SKIPIF1<0或SKIPIF1<0時,方程SKIPIF1<0有1個實(shí)數(shù)解;當(dāng)SKIPIF1<0或SKIPIF1<0時,方程SKIPIF1<0有2個實(shí)數(shù)解當(dāng)SKIPIF1<0時,方程SKIPIF1<0有3個實(shí)數(shù)解.4.(2023上·云南·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0在SKIPIF1<0上的單調(diào)性;(2)若SKIPIF1<0,令SKIPIF1<0,討論方程SKIPIF1<0的解的個數(shù).【答案】(1)SKIPIF1<0在SKIPIF1<0上遞增(2)答案見解析【詳解】(1)因?yàn)镾KIPIF1<0所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增.(2)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時,SKIPIF1<0有極小值SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0.令SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以,SKIPIF1<0的圖像經(jīng)過特殊點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,從而SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,從而SKIPIF1<0.根據(jù)以上信息,我們畫出SKIPIF1<0的大致圖像如圖所示.

方程SKIPIF1<0的解的個數(shù)為函數(shù)SKIPIF1<0的圖像與直線SKIPIF1<0的交點(diǎn)個數(shù).所以,關(guān)于方程SKIPIF1<0的解的個數(shù)有如下結(jié)論:當(dāng)SKIPIF1<0時,解為0個;當(dāng)SKIPIF1<0或SKIPIF1<0時,解為1個;當(dāng)SKIPIF1<0時,解為2個.5.(2023·四川綿陽·統(tǒng)考模擬預(yù)測)函數(shù)SKIPIF1<0.(1)若SKIPIF1<0為奇函數(shù),求實(shí)數(shù)SKIPIF1<0的值;(2)已知SKIPIF1<0僅有兩個零點(diǎn),證明:函數(shù)SKIPIF1<0僅有一個零點(diǎn).【答案】(1)SKIPIF1<0(2)證明見解析【詳解】(1)解:因?yàn)镾KIPIF1<0為奇函數(shù),所以可知SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.(2)證明:①當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0不可能有兩個零點(diǎn),此時不合題意;②當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,又因SKIPIF1<0,則要使得f(x)僅有兩個零點(diǎn),則SKIPIF1<0,即SKIPIF1<0,此方程無解,此時不合題意;③當(dāng)SKIPIF1<0時,即SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,符合題意,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0解得:SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上遞增,在SKIPIF1<0上遞減,又SKIPIF1<0,SKIPIF1<0故函數(shù)SKIPIF1<0僅有一個零點(diǎn).

題型02利用最值(極值)研究函數(shù)零點(diǎn)(方程的根)問題1.(2023上·北京·高三北京四中??计谥校┮阎瘮?shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0的極值;(2)當(dāng)SKIPIF1<0時,求SKIPIF1<0在SKIPIF1<0上的最小值;(3)若SKIPIF1<0在SKIPIF1<0上存在零點(diǎn),求SKIPIF1<0的取值范圍.【答案】(1)極大值為SKIPIF1<0,沒有極小值.(2)0(3)SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,定義域:SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0變化時,SKIPIF1<0,SKIPIF1<0的變化情況如下表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<0SKIPIF1<0單調(diào)遞增極大值SKIPIF1<0單調(diào)遞減則SKIPIF1<0的極大值為:SKIPIF1<0,SKIPIF1<0沒有極小值;(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,定義域:SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,定義域:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上是增函數(shù),則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上是增函數(shù),則SKIPIF1<0.(3)SKIPIF1<0,定義域:SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,定義域:SKIPIF1<0,SKIPIF1<0,(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上是減函數(shù),則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上是減函數(shù),SKIPIF1<0,不合題意;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,則存在SKIPIF1<0,使SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0變化時,SKIPIF1<0,SKIPIF1<0的變化情況如下表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<0SKIPIF1<0單調(diào)遞增極大值SKIPIF1<0單調(diào)遞減則SKIPIF1<0,只需SKIPIF1<0,即SKIPIF1<0;(2)當(dāng)SKIPIF1<0時,由(1)知SKIPIF1<0在SKIPIF1<0上是增函數(shù),SKIPIF1<0,不合題意;(3)當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上是增函數(shù),SKIPIF1<0在SKIPIF1<0上是增函數(shù),則SKIPIF1<0在SKIPIF1<0上是增函數(shù),SKIPIF1<0,不合題意,綜上所述,SKIPIF1<0的取值范圍是SKIPIF1<0.2.(2023上·福建福州·高三校聯(lián)考期中)已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)求SKIPIF1<0在SKIPIF1<0上的最大值;(2)若函數(shù)SKIPIF1<0恰有三個零點(diǎn),求a的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(2)根據(jù)函數(shù)的單調(diào)性,求得其極大值和極小值,結(jié)合零點(diǎn)存在性定理,可得答案.【詳解】(1)SKIPIF1<0,可知SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.(2)由(1)知SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0有三個零點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的取值范圍為SKIPIF1<0.3.(2023上·陜西·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0在SKIPIF1<0上存2個零點(diǎn),求SKIPIF1<0的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0【詳解】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.綜上所述,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)若SKIPIF1<0,在SKIPIF1<0上無零點(diǎn),不合題意;若SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,則直線SKIPIF1<0與函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象有兩個交點(diǎn),SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.所以SKIPIF1<0,又SKIPIF1<0,所以要使直線SKIPIF1<0與SKIPIF1<0的圖象有兩個交點(diǎn),則SKIPIF1<0,所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.4.(2023上·重慶涪陵·高三重慶市涪陵高級中學(xué)校校考開學(xué)考試)已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求SKIPIF1<0的最小值;(2)若函數(shù)SKIPIF1<0的圖象與SKIPIF1<0有且只有一個交點(diǎn),求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,SKIPIF1<0,因函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0恒成立,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.(2)SKIPIF1<0與SKIPIF1<0有且只有一個交點(diǎn),即SKIPIF1<0只有一個根,SKIPIF1<0只有一個根,令SKIPIF1<0,所以SKIPIF1<0的圖象與SKIPIF1<0的圖象只有一個交點(diǎn),SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,SKIPIF1<0上單調(diào)遞減,SKIPIF1<0的圖象如下所示:

SKIPIF1<0,又SKIPIF1<0的圖象與SKIPIF1<0的圖象只有一個交點(diǎn),SKIPIF1<0.5.(2023下·遼寧·高二校聯(lián)考期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,若SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0的單調(diào)區(qū)間;(2)曲線SKIPIF1<0與直線SKIPIF1<0有且僅有兩個交點(diǎn),求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0的增區(qū)間為SKIPIF1<0,減區(qū)間為SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的增區(qū)間為SKIPIF1<0,減區(qū)間為SKIPIF1<0,SKIPIF1<0.(2)SKIPIF1<0,所以SKIPIF1<0,兩邊取對數(shù)可得SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,所以曲線SKIPIF1<0與直線SKIPIF1<0有且僅有兩個交點(diǎn),即曲線SKIPIF1<0與直線SKIPIF1<0有兩個交點(diǎn)的充分必要條件為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.6.(2023下·廣東東莞·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程;(2)若SKIPIF1<0是SKIPIF1<0的極值點(diǎn),且方程SKIPIF1<0有3個不同的實(shí)數(shù)解,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)因?yàn)镾KIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0(2)由于SKIPIF1<0是SKIPIF1<0的極值點(diǎn),故SKIPIF1<0,此時SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減即SKIPIF1<0為函數(shù)的極大值點(diǎn),SKIPIF1<0是函數(shù)的極小值點(diǎn),故SKIPIF1<0,故SKIPIF1<0,故方程SKIPIF1<0有3個不同的實(shí)數(shù)解,即SKIPIF1<0的圖象由3個不同交點(diǎn),而SKIPIF1<0,SKIPIF1<0,結(jié)合SKIPIF1<0的圖象,當(dāng)SKIPIF1<0時,SKIPIF1<0可取負(fù)無窮小,當(dāng)SKIPIF1<0時,SKIPIF1<0可取正無窮大,

可得到SKIPIF1<0.題型03利用數(shù)形結(jié)合法研究函數(shù)的零點(diǎn)(方程的根)問題1.(2023上·重慶涪陵·高三重慶市涪陵高級中學(xué)校??奸_學(xué)考試)已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求SKIPIF1<0的最小值;(2)若函數(shù)SKIPIF1<0的圖象與SKIPIF1<0有且只有一個交點(diǎn),求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,SKIPIF1<0,因函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0恒成立,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.(2)SKIPIF1<0與SKIPIF1<0有且只有一個交點(diǎn),即SKIPIF1<0只有一個根,SKIPIF1<0只有一個根,令SKIPIF1<0,所以SKIPIF1<0的圖象與SKIPIF1<0的圖象只有一個交點(diǎn),SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,SKIPIF1<0上單調(diào)遞減,SKIPIF1<0的圖象如下所示:

SKIPIF1<0,又SKIPIF1<0的圖象與SKIPIF1<0的圖象只有一個交點(diǎn),SKIPIF1<0.2.(2023上·云南·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0在SKIPIF1<0上的單調(diào)性;(2)若SKIPIF1<0,令SKIPIF1<0,討論方程SKIPIF1<0的解的個數(shù).【答案】(1)SKIPIF1<0在SKIPIF1<0上遞增(2)答案見解析【詳解】(1)因?yàn)镾KIPIF1<0所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增.(2)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時,SKIPIF1<0有極小值SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0.令SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以,SKIPIF1<0的圖像經(jīng)過特殊點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,從而SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,從而SKIPIF1<0.根據(jù)以上信息,我們畫出SKIPIF1<0的大致圖像如圖所示.

方程SKIPIF1<0的解的個數(shù)為函數(shù)SKIPIF1<0的圖像與直線SKIPIF1<0的交點(diǎn)個數(shù).所以,關(guān)于方程SKIPIF1<0的解的個數(shù)有如下結(jié)論:當(dāng)SKIPIF1<0時,解為0個;當(dāng)SKIPIF1<0或SKIPIF1<0時,解為1個;當(dāng)SKIPIF1<0時,解為2個.3.(2023下·湖南衡陽·高二??茧A段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0其中SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若方程SKIPIF1<0有三個根,求SKIPIF1<0的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0.【詳解】(1)解:由題意得函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增;SKIPIF1<0當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,綜上所述,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增;(2)方程SKIPIF1<0有三個根,即SKIPIF1<0有三個根,SKIPIF1<0有三個根,顯然SKIPIF1<0不是方程的根,則SKIPIF1<0有三個根,即SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有三個交點(diǎn),SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0處取得極大值為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,如圖所示:

SKIPIF1<0要使SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有三個交點(diǎn),只需SKIPIF1<0,SKIPIF1<0的取值范圍是SKIPIF1<0.4.(2023上·廣東江門·高三統(tǒng)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的極值:(2)若SKIPIF1<0有兩個零點(diǎn),求a的取值范圍.【答案】(1)極小值為SKIPIF1<0,無極大值(2)SKIPIF1<0【詳解】(1)函數(shù)的定義域?yàn)镾KIPIF1<0,SKIPIF1<0令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增.所以當(dāng)SKIPIF1<0時,SKIPIF1<0有極小值SKIPIF1<0,無極大值.(2)因?yàn)楹瘮?shù)SKIPIF1<0有兩個零點(diǎn),所以直線SKIPIF1<0與函數(shù)SKIPIF1<0有兩個交點(diǎn),SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增.因?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以函數(shù)的大致圖象如圖所示,結(jié)合圖象可知,當(dāng)SKIPIF1<0時,SKIPIF1<0有兩個零點(diǎn),故a的取值范圍為SKIPIF1<0.5.(2023上·北京·高三北京二十中??茧A段練習(xí))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,(1)已知直線SKIPIF1<0是曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線,且SKIPIF1<0與曲線SKIPIF1<0相切,求SKIPIF1<0的值;(2)若方程SKIPIF1<0有三個不同實(shí)數(shù)解,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故切線SKIPIF1<0方程為:SKIPIF1<0,SKIPIF1<0與曲線SKIPIF1<0相切,聯(lián)立得到SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.(2)SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)單調(diào)遞增;SKIPIF1<0,SKIPIF1<0,畫出函數(shù)圖象:

根據(jù)圖象知:SKIPIF1<0.6.(2023·四川·校聯(lián)考一模)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)令SKIPIF1<0(a為常數(shù)),若SKIPIF1<0有兩個零點(diǎn)SKIPIF1<0,求實(shí)數(shù)a的取值范圍.【答案】(1)SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,單調(diào)遞增區(qū)間是SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由題意可知:SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0;令SKIPIF1<0,解得SKIPIF1<0;所以SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,單調(diào)遞增區(qū)間是SKIPIF1<0.(2)由題意可知:SKIPIF1<0,其定義域?yàn)镾KIPIF1<0,則SKIPIF1<0有兩個零點(diǎn)SKIPIF1<0,即SKIPIF1<0有兩解,即SKIPIF1<0有兩解,令SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0;令SKIPIF1<0,解得SKIPIF1<0;則SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,單調(diào)遞增區(qū)間是SKIPIF1<0,可知SKIPIF1<0,又因?yàn)镾KIPIF1<0,且當(dāng)SKIPIF1<0趨近于SKIPIF1<0,SKIPIF1<0趨近于0,要使得SKIPIF1<0有兩解,只需SKIPIF1<0,所以SKIPIF1<0,

故實(shí)數(shù)a的取值范圍為SKIPIF1<0.題型04構(gòu)造函數(shù)研究函數(shù)零點(diǎn)(方程的根)問題1.(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性.(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個實(shí)數(shù)根,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0【詳解】(1)由題意函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.當(dāng)SKIPIF1<0時,若SKIPIF1<0,則SKIPIF1<0單調(diào)遞增;若SKIPIF1<0,則SKIPIF1<0單調(diào)遞減.當(dāng)SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.②當(dāng)SKIPIF1<0時,SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增.③當(dāng)SKIPIF1<0時,SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增.綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0為增函數(shù),且SKIPIF1<0的值域?yàn)镾KIPIF1<0.令SKIPIF1<0,所以SKIPIF1<0可化為SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0.因?yàn)殛P(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個實(shí)數(shù)根,所以直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖像有兩個不同的交點(diǎn).因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0單調(diào)遞減.所以SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.2.(2023上·湖南·高三邵陽市第二中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的零點(diǎn)個數(shù);(2)已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個實(shí)根SKIPIF1<0,求證:SKIPIF1<0.(注:SKIPIF1<0是自然對數(shù)的底數(shù))【答案】(1)答案見解析(2)證明見解析【詳解】(1)由已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,令函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,可知函數(shù)SKIPIF1<0的圖象如下所示:

所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)為0個,當(dāng)SKIPIF1<0或SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論