黑龍江省哈爾濱市122中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第1頁
黑龍江省哈爾濱市122中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第2頁
黑龍江省哈爾濱市122中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第3頁
黑龍江省哈爾濱市122中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第4頁
黑龍江省哈爾濱市122中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省哈爾濱市122中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在各項(xiàng)均為正數(shù)的等比數(shù)列中,公比,若,,,數(shù)列的前項(xiàng)和為,則取最大值時(shí),的值為()A. B. C. D.或2.在中,設(shè)角,,的對邊分別是,,,且,則一定是()A.等邊三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形3.不等式的解集是A. B.C.或 D.4.已知中,,,,那么角等于()A. B. C.或 D.5.已知向量,,,若,則()A.1 B.2 C.3 D.46.若,,且與夾角為,則()A.3 B. C.2 D.7.在△ABC中,AB=,AC=1,,△ABC的面積為,則()A.30° B.45° C.60° D.75°8.在邊長為1的正方體中,,,分別是棱,,的中點(diǎn),是底面內(nèi)一動(dòng)點(diǎn),若直線與平面沒有公共點(diǎn),則三角形面積的最小值為()A.1 B. C. D.9.已知不等式的解集為,則不等式的解集為()A. B.C. D.10.已知等比數(shù)列中,,且有,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若為冪函數(shù),則滿足的的值為________.12.在正方體中,是棱的中點(diǎn),則異面直線與所成角的余弦值為__________.13.已知的三邊分別是,且面積,則角__________.14.在數(shù)列中,,,,則_____________.15.已知為第二象限角,且,則_________.16.若把寫成的形式,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,,求角A的值。18.已知圓:.(Ⅰ)求過點(diǎn)的圓的切線方程;(Ⅱ)設(shè)圓與軸相交于,兩點(diǎn),點(diǎn)為圓上異于,的任意一點(diǎn),直線,分別與直線交于,兩點(diǎn).(?。┊?dāng)點(diǎn)的坐標(biāo)為時(shí),求以為直徑的圓的圓心坐標(biāo)及半徑;(ⅱ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),以為直徑的圓被軸截得的弦長是否為定值?請說明理由.19.如圖在四棱錐中,底面是矩形,點(diǎn)、分別是棱和的中點(diǎn).(1)求證:平面;(2)若,且平面平面,證明平面.20.2016年崇明區(qū)政府投資8千萬元啟動(dòng)休閑體育新鄉(xiāng)村旅游項(xiàng)目.規(guī)劃從2017年起,在今后的若干年內(nèi),每年繼續(xù)投資2千萬元用于此項(xiàng)目.2016年該項(xiàng)目的凈收入為5百萬元,并預(yù)測在相當(dāng)長的年份里,每年的凈收入均為上一年的基礎(chǔ)上增長.記2016年為第1年,為第1年至此后第年的累計(jì)利潤(注:含第年,累計(jì)利潤=累計(jì)凈收入﹣累計(jì)投入,單位:千萬元),且當(dāng)為正值時(shí),認(rèn)為該項(xiàng)目贏利.(1)試求的表達(dá)式;(2)根據(jù)預(yù)測,該項(xiàng)目將從哪一年開始并持續(xù)贏利?請說明理由.21.某中學(xué)從高三男生中隨機(jī)抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:組號分組頻數(shù)頻率第1組50.05第2組a0.35第3組30b第4組200.20第5組100.10合計(jì)n1.00(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;(2)為了能對學(xué)生的體能做進(jìn)一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進(jìn)行不同項(xiàng)目的體能測試,若在這7名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測試,求第4組中至少有一名學(xué)生被抽中的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

利用等比數(shù)列的性質(zhì)求出、的值,可求出和的值,利用等比數(shù)列的通項(xiàng)公式可求出,由此得出,并求出數(shù)列的前項(xiàng)和,然后求出,利用二次函數(shù)的性質(zhì)求出當(dāng)取最大值時(shí)對應(yīng)的值.【詳解】由題意可知,由等比數(shù)列的性質(zhì)可得,解得,所以,解得,,,則數(shù)列為等差數(shù)列,,,,因此,當(dāng)或時(shí),取最大值,故選:D.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),同時(shí)也考查了等差數(shù)列求和以及等差數(shù)列前項(xiàng)和的最值,在求解時(shí)將問題轉(zhuǎn)化為二次函數(shù)的最值求解,考查方程與函數(shù)思想的應(yīng)用,屬于中等題.2、C【解析】

利用二倍角公式化簡已知表達(dá)式,利用余弦定理化角為邊的關(guān)系,即可推出三角形的形狀.【詳解】解:因?yàn)?,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故選:.【點(diǎn)睛】本題考查三角形的形狀的判斷,余弦定理的應(yīng)用,考查計(jì)算能力,屬于中檔題.3、B【解析】試題分析:∵,∴,即,∴不等式的解集為.考點(diǎn):分式不等式轉(zhuǎn)化為一元二次不等式.4、B【解析】

先由正弦定理求出,進(jìn)而得出角,再根據(jù)大角對大邊,大邊對大角確定角.【詳解】由正弦定理得:,,∴或,∵,∴,∴,故選B.【點(diǎn)睛】本題主要考查正弦定理的應(yīng)用以及大邊對大角,大角對大邊的三角形邊角關(guān)系的應(yīng)用.5、A【解析】

利用坐標(biāo)表示出,根據(jù)垂直關(guān)系可知,解方程求得結(jié)果.【詳解】,,解得:本題正確選項(xiàng):【點(diǎn)睛】本題考查向量垂直關(guān)系的坐標(biāo)表示,屬于基礎(chǔ)題.6、B【解析】

由題意利用兩個(gè)向量數(shù)量積的定義,求得的值,再根據(jù),計(jì)算求得結(jié)果.【詳解】由題意若,,且與夾角為,可得,.故選:B.【點(diǎn)睛】本題考查向量數(shù)量積的定義、向量的模的方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意不要錯(cuò)選成A答案.7、C【解析】

試題分析:由三角形面積公式得,,所以.顯然三角形為直角三角形,且,所以.考點(diǎn):解三角形.8、D【解析】

根據(jù)直線與平面沒有公共點(diǎn)可知平面.將截面補(bǔ)全后,可確定點(diǎn)的位置,進(jìn)而求得三角形面積的最小值.【詳解】由題意,,分別是棱,,的中點(diǎn),補(bǔ)全截面為,如下圖所示:因?yàn)橹本€與平面沒有公共點(diǎn)所以平面,即平面,平面平面此時(shí)位于底面對角線上,且當(dāng)與底面中心重合時(shí),取得最小值此時(shí)三角形的面積最小故選:D【點(diǎn)睛】本題考查了直線與平面平行、平面與平面平行的性質(zhì)與應(yīng)用,過定點(diǎn)截面的作法,屬于難題.9、A【解析】

根據(jù)一元二次不等式的解集與一元二次方程根的關(guān)系,結(jié)合韋達(dá)定理可構(gòu)造方程求得;利用一元二次不等式的解法可求得結(jié)果.【詳解】的解集為和是方程的兩根,且,解得:解得:,即不等式的解集為故選:【點(diǎn)睛】本題考查一元二次不等式的解法、一元二次不等式的解集與一元二次方程根的關(guān)系等知識的應(yīng)用;關(guān)鍵是能夠通過一元二次不等式的解集確定一元二次方程的根,進(jìn)而利用韋達(dá)定理構(gòu)造方程求得變量.10、A【解析】,,所以選A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)冪函數(shù)定義知,又,由二倍角公式即可求解.【詳解】因?yàn)闉閮绾瘮?shù),所以,即,因?yàn)?所以,即,因?yàn)?,所以?故填.【點(diǎn)睛】本題主要考查了冪函數(shù)的定義,正弦的二倍角公式,屬于中檔題.12、【解析】

假設(shè)正方體棱長,根據(jù)//,得到異面直線與所成角,計(jì)算,可得結(jié)果.【詳解】假設(shè)正方體棱長為1,因?yàn)?/,所以異面直線與所成角即與所成角則角為如圖,所以故答案為:【點(diǎn)睛】本題考查異面直線所成的角,屬基礎(chǔ)題.13、【解析】試題分析:由,可得,整理得,即,所以.考點(diǎn):余弦定理;三角形的面積公式.14、5【解析】

利用遞推關(guān)系式依次求值,歸納出:an+6=an,再利用數(shù)列的周期性,得解.【詳解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.則a2018=a6×336+2=a2=5【點(diǎn)睛】本題考查了遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計(jì)算能力.15、.【解析】

先由求出的值,再利用同角三角函數(shù)的基本關(guān)系式求出、即可.【詳解】因?yàn)闉榈诙笙藿?,且,所以,解得,再由及為第二象限角可得、,此時(shí).故答案為:.【點(diǎn)睛】本題主要考查兩角差的正切公式及同角三角函數(shù)的基本關(guān)系式的應(yīng)用,屬常規(guī)考題.16、【解析】

將角度化成弧度,再用象限角的表示方法求解即可.【詳解】解:.故答案為:.【點(diǎn)睛】本題考查弧度與角度的互化,象限角的表示,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、或【解析】

根據(jù)的值可確定,進(jìn)而得到,利用兩角和差公式、二倍角公式和輔助角公式化簡求值可求得,根據(jù)所處范圍可求得的值,進(jìn)而求得角.【詳解】且或或【點(diǎn)睛】本題考查利用三角恒等變換的公式化簡求值的問題,涉及到兩角和差的正弦公式、二倍角公式和輔助角公式的應(yīng)用、特殊角三角函數(shù)值的求解問題;關(guān)鍵是能夠通過三角恒等變換公式,整理化簡已知式子,得到與所求角有關(guān)的角的三角函數(shù)值.18、(Ⅰ)或;(Ⅱ)(?。﹫A心為,半徑;(ⅱ)見解析【解析】

(Ⅰ)先判斷在圓外,所以圓過點(diǎn)的切線有兩條.再由斜率是否存在分別討論.(Ⅱ)(?。┰O(shè)直線PA和PB把其與直線交于,兩點(diǎn)表示出來,寫出圓的方程化簡即可.(ⅱ)先求出以為直徑的圓被軸截得的弦長,在設(shè)出PA和PB的直線方程,分別求出與直線的交點(diǎn),求出圓心,再根據(jù)勾股定理易求解.【詳解】(Ⅰ)因?yàn)辄c(diǎn)在圓外,所以圓過點(diǎn)的切線有兩條.當(dāng)直線的斜率不存在時(shí),直線方程為,滿足條件.當(dāng)直線的斜率存在時(shí),可設(shè)為,即.由圓心到切線的距離,解得.此時(shí)切線方程為.綜上,圓的切線方程為或.(Ⅱ)因?yàn)閳A與軸相交于,兩點(diǎn),所以,.(?。┊?dāng)點(diǎn)坐標(biāo)為時(shí),直線的斜率為,直線的方程為.直線與直線的交點(diǎn)坐標(biāo)為,同理直線的斜率為,直線的方程為.直線與直線的交點(diǎn)坐標(biāo)為.所以以為直徑的圓的圓心為,半徑.(ⅱ)以為直徑的圓被軸截得的弦長為定值.設(shè)點(diǎn),則.直線的斜率為,直線的方程為.直線與直線的交點(diǎn)坐標(biāo)為.同理直線的斜率為,直線的方程為.直線與直線的交點(diǎn)坐標(biāo)為.所以圓的圓心,半徑為.方法一:圓被軸截得的弦長為.所以以為直徑的圓被軸截得的弦長為定值.方法二:圓的方程為.令,解得.所以.所以圓與軸的交點(diǎn)坐標(biāo)分別為,.所以以為直徑的圓被軸截得的弦長為定值.【點(diǎn)睛】此題考查解析幾何中關(guān)于圓的題目,一般做法是設(shè)而不求,將需要的信息表示出來再化簡求值,屬于一般性題目.19、(1)見證明;(2)見證明【解析】

(1)可證,從而得到要求證的線面平行.(2)可證,再由及是棱的中點(diǎn)可得,從而得到平面.【詳解】(1)證明:因?yàn)辄c(diǎn)、分別是棱和的中點(diǎn),所以,又在矩形中,,所以,又面,面,所以平面(2)證明:在矩形中,,又平面平面,平面平面,面,所以平面,又面,所以①因?yàn)榍沂堑闹悬c(diǎn),所以,②由①②及面,面,,所以平面.【點(diǎn)睛】線面平行的證明的關(guān)鍵是在面中找到一條與已知直線平行的直線,找線的方法可利用三角形的中位線或平行公理.線面垂直的判定可由線線垂直得到,注意線線是相交的,而要求證的線線垂直又可以轉(zhuǎn)化為已知的線面垂直(有時(shí)它來自面面垂直)來考慮.20、(1);(2).【解析】試題分析:(1)由題意知,第一年至此后第年的累計(jì)投入為(千萬元),第年至此后第年的累計(jì)凈收入為,利用等比數(shù)列數(shù)列的求和公式可得;(2)由,利用指數(shù)函數(shù)的單調(diào)性即可得出.試題解析:(1)由題意知,第1年至此后第n(n∈N*)年的累計(jì)投入為8+2(n﹣1)=2n+6(千萬元),第1年至此后第n(n∈N*)年的累計(jì)凈收入為+×+×+…+×=(千萬元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千萬元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴當(dāng)n≤3時(shí),f(n+1)﹣f(n)<1,故當(dāng)n≤2時(shí),f(n)遞減;當(dāng)n≥2時(shí),f(n+1)﹣f(n)>1,故當(dāng)n≥2時(shí),f(n)遞增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴該項(xiàng)目將從第8年開始并持續(xù)贏利.答:該項(xiàng)目將從2123年開始并持續(xù)贏利;方法二:設(shè)f(x)=﹣2x﹣7(x≥1),則f′(x)=,令f'(x)=1,得=≈=5,∴x≈2.從而當(dāng)x∈[1,2)時(shí),f'(x)<1,f(x)遞減;當(dāng)x∈(2,+∞)時(shí),f'(x)>1,f(x)遞增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴該項(xiàng)目將從第8年開始并持續(xù)贏利.答:該項(xiàng)目將從2123年開始并持續(xù)贏利.21、(1)直方圖見解析;(2).【解析】

(1)由題意知,0.050,從而n=100,由此求出第2組的頻數(shù)和第3組的頻率,并完成頻率分布直方圖.(2)利用分層抽樣,35名學(xué)生中抽取7名學(xué)生,設(shè)第1組的1位學(xué)生為,第4組的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論