2023-2024學(xué)年河南省名校高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2023-2024學(xué)年河南省名校高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2023-2024學(xué)年河南省名校高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2023-2024學(xué)年河南省名校高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2023-2024學(xué)年河南省名校高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年河南省名校高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.漢朝時,張衡得出圓周率的平方除以16等于,如圖,網(wǎng)格紙上的小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,俯視圖中的曲線為圓,利用張衡的結(jié)論可得該幾何體的體積為()A.32 B.40 C. D.2.?dāng)S一枚均勻的硬幣,如果連續(xù)拋擲2020次,那么拋擲第2019次時出現(xiàn)正面向上的概率是()A. B. C. D.3.已知正方形的邊長為,若將正方形沿對角線折疊為三棱錐,則在折疊過程中,不能出現(xiàn)()A. B.平面平面 C. D.4.函數(shù)f(x)=sin(ωx+π4)(ω>0)的圖象在[0,πA.(1,5) B.(1,+∞) C.[5.若實數(shù)滿足約束條件,則的最大值是()A. B.0 C.1 D.26.已知點,點是圓上任意一點,則面積的最大值是()A. B. C. D.7.截一個幾何體,各個截面都是圓面,則這個幾何體一定是()A.圓柱 B.圓錐 C.球 D.圓臺8.函數(shù)的定義域為()A. B. C. D.9.等差數(shù)列的前項和為,若,且,則()A.10 B.7 C.12 D.310.某學(xué)校為了解1000名新生的身體素質(zhì),將這些學(xué)生編號為1,2,…,1000,從這些新生中用系統(tǒng)抽樣方法等距抽取100名學(xué)生進行體質(zhì)測驗,若46號學(xué)生被抽到,則下面4名學(xué)生中被抽到的是A.8號學(xué)生 B.200號學(xué)生 C.616號學(xué)生 D.815號學(xué)生二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)f(x)=sin22x的最小正周期是__________.12.從甲、乙、丙、丁四個學(xué)生中任選兩人到一個單位實習(xí),余下的兩人到另一單位實習(xí),則甲、乙兩人不在同一單位實習(xí)的概率為________.13.已知直線l過點P(-2,5),且斜率為-,則直線l的方程為________.14.對任意實數(shù),不等式恒成立,則實數(shù)的取值范圍是____.15.過拋物線的焦點F的直線交拋物線于A、B兩點,則________.16.在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,,函數(shù).(1)若,,求的值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.18.設(shè),求函數(shù)的最小值為__________.19.某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到下表數(shù)據(jù):單價(元)銷量(件)且,,(1)已知與具有線性相關(guān)關(guān)系,求出關(guān)于回歸直線方程;(2)解釋回歸直線方程中的含義并預(yù)測當(dāng)單價為元時其銷量為多少?20.已知函數(shù).(1)證明函數(shù)在定義域上單調(diào)遞增;(2)求函數(shù)的值域;(3)令,討論函數(shù)零點的個數(shù).21.已知是公差不為0的等差數(shù)列,,,成等比數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,證明:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

將三視圖還原,即可求組合體體積【詳解】將三視圖還原成如圖幾何體:半個圓柱和半個圓錐的組合體,底面半徑為2,高為4,則體積為,利用張衡的結(jié)論可得故選C【點睛】本題考查三視圖,正確還原,熟記圓柱圓錐的體積是關(guān)鍵,是基礎(chǔ)題2、B【解析】

根據(jù)概率的性質(zhì)直接得到答案.【詳解】根據(jù)概率的性質(zhì)知:每次正面向上的概率為.故選:.【點睛】本題考查了概率的性質(zhì),屬于簡單題.3、D【解析】對于A:取BD中點O,因為,AO所以面AOC,所以,故A對;對于B:當(dāng)沿對角線折疊成直二面角時,有面平面平面,故B對;對于C:當(dāng)折疊所成的二面角時,頂點A到底面BCD的距離為,此時,故C對;對于D:若,因為,面ABC,所以,而,即直角邊長與斜邊長相等,顯然不對;故D錯;故選D點睛:本題考查了立體幾何中折疊問題,要分析清楚折疊前后的變化量與不變量以及線線與線面的位置關(guān)系,屬于中檔題.4、C【解析】

結(jié)合正弦函數(shù)的基本性質(zhì),抓住只有一條對稱軸,建立不等式,計算范圍,即可.【詳解】當(dāng)x=π4時,wx+π4=π4w+π4,當(dāng)【點睛】考查了正弦函數(shù)的基本性質(zhì),關(guān)鍵抓住只有一條對稱軸,建立不等式,計算范圍,即可.5、C【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)即可得解.【詳解】作出可行域如圖,設(shè),聯(lián)立,則,,當(dāng)直線經(jīng)過點時,截距取得最小值,取得最大值.故選:C【點睛】本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.6、B【解析】

求出直線的方程,計算出圓心到直線的距離,可知的最大高度為,并計算出,最后利用三角形的面積公式可得出結(jié)果.【詳解】直線的方程,且,圓的圓心坐標(biāo)為,半徑長為,圓心到直線的距離為,所以,點到直線的距離的最大值為,因此,面積的最大值為,故選B.【點睛】本題考查三角形面積的最值問題,考查圓的幾何性質(zhì),當(dāng)直線與圓相離時,若圓的半徑為,圓心到直線的距離為,則圓上一點到直線距離的最大值為,距離的最小值為,要熟悉相關(guān)結(jié)論的應(yīng)用.7、C【解析】

試題分析:圓柱截面可能是矩形;圓錐截面可能是三角形;圓臺截面可能是梯形,該幾何體顯然是球,故選C.8、A【解析】

根據(jù)對數(shù)函數(shù)的定義域直接求解即可.【詳解】由題知函數(shù),所以,所以函數(shù)的定義域是.故選:A.【點睛】本題考查了對數(shù)函數(shù)的定義域的求解,屬于基礎(chǔ)題.9、C【解析】

由等差數(shù)列的前項和公式解得,由,得,由此能求出的值?!驹斀狻拷猓翰顢?shù)列的前n項和為,,,解得,解得,故選:C?!军c睛】本題考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.10、C【解析】

等差數(shù)列的性質(zhì).滲透了數(shù)據(jù)分析素養(yǎng).使用統(tǒng)計思想,逐個選項判斷得出答案.【詳解】詳解:由已知將1000名學(xué)生分成100個組,每組10名學(xué)生,用系統(tǒng)抽樣,46號學(xué)生被抽到,所以第一組抽到6號,且每組抽到的學(xué)生號構(gòu)成等差數(shù)列,公差,所以,若,則,不合題意;若,則,不合題意;若,則,符合題意;若,則,不合題意.故選C.【點睛】本題主要考查系統(tǒng)抽樣.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

將所給的函數(shù)利用降冪公式進行恒等變形,然后求解其最小正周期即可.【詳解】函數(shù),周期為【點睛】本題主要考查二倍角的三角函數(shù)公式?三角函數(shù)的最小正周期公式,屬于基礎(chǔ)題.12、.【解析】

求得從甲、乙、丙、丁四個學(xué)生中任選兩人的總數(shù)和甲、乙兩人不在同一單位實習(xí)的方法數(shù),由古典概型的概率計算公式可得所求值.【詳解】解:從甲、乙、丙、丁四個學(xué)生中任選兩人的方法數(shù)為種,甲、乙兩人不在同一單位實習(xí)的方法數(shù)為種,則甲、乙兩人不在同一單位實習(xí)的概率為.故答案為:.【點睛】本題主要考查古典概型的概率計算公式,考查運算能力,屬于基礎(chǔ)題.13、3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.14、【解析】

分別在和兩種情況下進行討論,當(dāng)時,根據(jù)二次函數(shù)圖像可得不等式組,從而求得結(jié)果.【詳解】①當(dāng),即時,不等式為:,恒成立,則滿足題意②當(dāng),即時,不等式恒成立則需:解得:綜上所述:本題正確結(jié)果:【點睛】本題考查不等式恒成立問題的求解,易錯點是忽略不等式是否為一元二次不等式,造成丟根;處理一元二次不等式恒成立問題的關(guān)鍵是結(jié)合二次函數(shù)圖象來得到不等關(guān)系,屬于常考題型.15、【解析】

討論斜率不存在和斜率存在兩種情況,分別計算得到答案.【詳解】拋物線的焦點F為,當(dāng)斜率不存在時,易知,故;當(dāng)斜率存在時,設(shè),故,即,故,.綜上所述:.故答案為:.【點睛】本題考查了拋物線中線段長度問題,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.16、【解析】

直接利用長度型幾何概型求解即可.【詳解】因為區(qū)間總長度為,符合條件的區(qū)間長度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為,故答案為:.【點睛】解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與長度有關(guān)的幾何概型問題關(guān)鍵是計算問題的總長度以及事件的長度.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用數(shù)量積公式結(jié)合二倍角公式,輔助角公式化簡函數(shù)解析式,由,結(jié)合的范圍以及平方關(guān)系得出的值,由結(jié)合兩角差的余弦公式求解即可;(2)由整體法結(jié)合正弦函數(shù)的單調(diào)性得出該函數(shù)的單調(diào)增區(qū)間,則區(qū)間應(yīng)該包含在的一個增區(qū)間內(nèi),根據(jù)包含關(guān)系列出不等式組,求解即可得出正數(shù)的取值范圍.【詳解】(1)因為,所以,即.因為,所以所以.所以.(2).令,得,因為函數(shù)在區(qū)間上是單調(diào)遞增函數(shù)所以存在,使得所以有,即因為,所以又因為,所以,則,所以從而有,所以,所以.【點睛】本題主要考查了利用同角三角函數(shù)的基本關(guān)系,二倍角公式,兩角差的余弦公式化簡求值以及根據(jù)正弦型函數(shù)的單調(diào)性求參數(shù)范圍,屬于較難題.18、9【解析】試題分析:本題解題的關(guān)鍵在于關(guān)注分母,充分運用發(fā)散性思維,經(jīng)過同解變形構(gòu)造基本不等式,從而求出最小值.試題解析:由得,則當(dāng)且僅當(dāng)時,上式取“=”,所以.考點:基本不等式;構(gòu)造思想和發(fā)散性思維.19、(1);(2)銷量為件.【解析】

(1)利用最小二乘法的公式求得與的值,即可求出線性回歸方程;(2)的含義是單價每增加1元,該產(chǎn)品的銷量將減少7件;在(1)中求得的回歸方程中,取求得值,即可得到單價為12元時的銷量.【詳解】(1)由題意得:,,,,關(guān)于回歸直線方程為;(2)的含義是單價每增加元,該產(chǎn)品的銷量將減少件;當(dāng)時,,即當(dāng)單價為元時預(yù)測其銷量為件.【點睛】本題主要考查線性回歸方程的求法—最小二乘法,以及利用線性回歸方程進行預(yù)測估計。20、(1)證明見解析;(2);(3)當(dāng)時,沒有零點;當(dāng)時,有且僅有一個零點【解析】

(1)求出函數(shù)定義域后直接用定義法即可證明;(2)由題意得,對兩邊同時平方得,求出的取值范圍即可得解;(3)轉(zhuǎn)化條件得,令,利用二次函數(shù)的性質(zhì)分類討論即可得解.【詳解】(1)證明:令,解得,故函數(shù)的定義域為令,由,可得,所以,,故即,所以函數(shù)在定義域上單調(diào)遞增.(2)由,,故,,當(dāng)時,,有,可得:,故,由,可得,故函數(shù)的值域為,(3)由(2)知,則,令,則,令,①當(dāng)時,,此時函數(shù)沒有零點,故函數(shù)也沒有零點;②當(dāng)時,二次函數(shù)的對稱軸為,則函數(shù)在區(qū)間單調(diào)遞增,而,,故函數(shù)有一個零點,又由函數(shù)單調(diào)遞增,可得函數(shù)也只有一個零點;③當(dāng)時,,二次函數(shù)開口向下,對稱軸,又,,此時函數(shù)沒有零點,故函數(shù)也沒有零點.綜上,當(dāng)時,函數(shù)沒有零點;當(dāng)時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論