版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022屆安慶九一六校中考適應(yīng)性考試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(共10小題,每小題3分,共30分)1.若一次函數(shù)的圖象經(jīng)過(guò)第一、二、四象限,則下列不等式一定成立的是()A. B. C. D.2.下列計(jì)算錯(cuò)誤的是()A.4x3?2x2=8x5B.a(chǎn)4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b23.如圖,在中,,,,則等于()A. B. C. D.4.如圖,矩形ABCD中,AB=10,BC=5,點(diǎn)E,F(xiàn),G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長(zhǎng)的最小值為()A.5 B.10 C.10 D.155.如圖,點(diǎn)P是菱形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P垂直于AC的直線交菱形ABCD的邊于M、N兩點(diǎn).設(shè)AC=2,BD=1,AP=x,△AMN的面積為y,則y關(guān)于x的函數(shù)圖象大致形狀是()A. B. C. D.6.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.7.在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”h:任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”S=ah.例如:三點(diǎn)坐標(biāo)分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點(diǎn)的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或68.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是A. B. C. D.9.全球芯片制造已經(jīng)進(jìn)入10納米到7納米器件的量產(chǎn)時(shí)代.中國(guó)自主研發(fā)的第一臺(tái)7納米刻蝕機(jī),是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.?dāng)?shù)據(jù)0.000000007用科學(xué)記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣1010.三角形兩邊的長(zhǎng)是3和4,第三邊的長(zhǎng)是方程x2-12x+35=0的根,則該三角形的周長(zhǎng)為()A.14 B.12 C.12或14 D.以上都不對(duì)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_____.12.在某一時(shí)刻,測(cè)得一根長(zhǎng)為1.5m的標(biāo)桿的影長(zhǎng)為3m,同時(shí)測(cè)得一根旗桿的影長(zhǎng)為26m,那么這根旗桿的高度為_____m.13.將6本相同厚度的書疊起來(lái),它們的高度是9厘米.如果將這樣相同厚度的書疊起來(lái)的高度是42厘米,那么這些書有_____本.14.如圖,在正方形ABCD中,E是AB上一點(diǎn),BE=2,AE=3BE,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值是.15.如圖,邊長(zhǎng)為的正方形紙片剪出一個(gè)邊長(zhǎng)為m的正方形之后,剩余部分可剪拼成一個(gè)矩形,若拼成的矩形一邊長(zhǎng)為4,則另一邊長(zhǎng)為16.已知,那么__.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線MN,使∠BCM=2∠A.判斷直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;若OA=4,∠BCM=60°,求圖中陰影部分的面積.18.(8分)如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長(zhǎng).19.(8分)解方程:-=120.(8分)已知一個(gè)口袋中裝有7個(gè)只有顏色不同的球,其中3個(gè)白球,4個(gè)黑球.(1)求從中隨機(jī)抽取出一個(gè)黑球的概率是多少?(2)若往口袋中再放入x個(gè)白球和y個(gè)黑球,從口袋中隨機(jī)取出一個(gè)白球的概率是14,求y與x21.(8分)先化簡(jiǎn),再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.22.(10分)如圖,為了測(cè)量建筑物AB的高度,在D處樹立標(biāo)桿CD,標(biāo)桿的高是2m,在DB上選取觀測(cè)點(diǎn)E、F,從E測(cè)得標(biāo)桿和建筑物的頂部C、A的仰角分別為58°、45°.從F測(cè)得C、A的仰角分別為22°、70°.求建筑物AB的高度(精確到0.1m).(參考數(shù)據(jù):tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)23.(12分)如圖,在四邊形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度數(shù);四邊形ABCD的面積(結(jié)果保留根號(hào)).24.某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購(gòu)物券,可以重新在本商場(chǎng)消費(fèi),某顧客剛好消費(fèi)200元.(1)該顧客至少可得到_____元購(gòu)物券,至多可得到_______元購(gòu)物券;(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于30元的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】∵一次函數(shù)y=ax+b的圖象經(jīng)過(guò)第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A錯(cuò)誤,a?b<0,故B錯(cuò)誤,ab<0,故C錯(cuò)誤,<0,故D正確.故選D.2、B【解析】
根據(jù)單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式;合并同類項(xiàng)的法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧記為:“首平方,末平方,首末兩倍中間放”可得答案.【詳解】A選項(xiàng):4x3?1x1=8x5,故原題計(jì)算正確;
B選項(xiàng):a4和a3不是同類項(xiàng),不能合并,故原題計(jì)算錯(cuò)誤;
C選項(xiàng):(-x1)5=-x10,故原題計(jì)算正確;
D選項(xiàng):(a-b)1=a1-1ab+b1,故原題計(jì)算正確;
故選:B.【點(diǎn)睛】考查了整式的乘法,關(guān)鍵是掌握整式的乘法各計(jì)算法則.3、A【解析】分析:先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求解可得.詳解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故選:A.點(diǎn)睛:本題主要考查銳角三角函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理及正弦函數(shù)的定義.4、B【解析】作點(diǎn)E關(guān)于BC的對(duì)稱點(diǎn)E′,連接E′G交BC于點(diǎn)F,此時(shí)四邊形EFGH周長(zhǎng)取最小值,過(guò)點(diǎn)G作GG′⊥AB于點(diǎn)G′,如圖所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四邊形EFGH=2E′G=10,故選B.【點(diǎn)睛】本題考查了軸對(duì)稱-最短路徑問(wèn)題,矩形的性質(zhì)等,根據(jù)題意正確添加輔助線是解題的關(guān)鍵.5、C【解析】△AMN的面積=AP×MN,通過(guò)題干已知條件,用x分別表示出AP、MN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當(dāng)0<x≤1時(shí),如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵M(jìn)N⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數(shù)圖象開口向上;(2)當(dāng)1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數(shù)圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數(shù)的圖象,考查了學(xué)生從圖象中讀取信息的數(shù)形結(jié)合能力,體現(xiàn)了分類討論的思想.6、B【解析】
根據(jù)題意畫出圖形,連接AO并延長(zhǎng)交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長(zhǎng),由垂徑定理表示出BC的長(zhǎng),然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長(zhǎng)交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點(diǎn)睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長(zhǎng),解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.7、C【解析】
由題可知“水平底”a的長(zhǎng)度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進(jìn)行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當(dāng)t>2時(shí),t-1=6,解得t=7;當(dāng)t<1時(shí),2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系的內(nèi)容,理解題意是解題關(guān)鍵.8、C【解析】
如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設(shè)DE=a,則AE=3a,利用平行線分線段成比例定理解決問(wèn)題即可.【詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設(shè)DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點(diǎn)睛】本題考查正方形的性質(zhì)、平行線分線段成比例定理、三角形中位線定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造平行線解決問(wèn)題,學(xué)會(huì)利用參數(shù)解決問(wèn)題,屬于中考??碱}型.9、C【解析】
本題根據(jù)科學(xué)記數(shù)法進(jìn)行計(jì)算.【詳解】因?yàn)榭茖W(xué)記數(shù)法的標(biāo)準(zhǔn)形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學(xué)記數(shù)法法可表示為7×,故選C.【點(diǎn)睛】本題主要考察了科學(xué)記數(shù)法,熟練掌握科學(xué)記數(shù)法是本題解題的關(guān)鍵.10、B【解析】
解方程得:x=5或x=1.當(dāng)x=1時(shí),3+4=1,不能組成三角形;當(dāng)x=5時(shí),3+4>5,三邊能夠組成三角形.∴該三角形的周長(zhǎng)為3+4+5=12,故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、72°【解析】
首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點(diǎn)睛】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵12、13【解析】
根據(jù)同時(shí)同地物高與影長(zhǎng)成比列式計(jì)算即可得解.【詳解】解:設(shè)旗桿高度為x米,由題意得,,解得x=13.故答案為13.【點(diǎn)睛】本題考查投影,解題的關(guān)鍵是應(yīng)用相似三角形.13、1.【解析】
因?yàn)橐槐緯暮穸仁且欢ǖ?,根?jù)本數(shù)與書的高度成正比列比例式即可得到結(jié)論.【詳解】設(shè)這些書有x本,
由題意得,,
解得:x=1,
答:這些書有1本.
故答案為:1.【點(diǎn)睛】本題考查了比例的性質(zhì),正確的列出比例式是解題的關(guān)鍵.14、10【解析】
由正方形性質(zhì)的得出B、D關(guān)于AC對(duì)稱,根據(jù)兩點(diǎn)之間線段最短可知,連接DE,交AC于P,連接BP,則此時(shí)PB+PE的值最小,進(jìn)而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時(shí)PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關(guān)于AC對(duì)稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.15、【解析】
因?yàn)榇笳叫芜呴L(zhǎng)為,小正方形邊長(zhǎng)為m,所以剩余的兩個(gè)直角梯形的上底為m,下底為,所以矩形的另一邊為梯形上、下底的和:+m=.16、【解析】
根據(jù)比例的性質(zhì),設(shè)x=5a,則y=2a,代入原式即可求解.【詳解】解:∵,∴設(shè)x=5a,則y=2a,那么.故答案為:.【點(diǎn)睛】本題主要考查了比例的性質(zhì),根據(jù)比例式用同一個(gè)未知數(shù)得出的值進(jìn)而求解是解題關(guān)鍵.三、解答題(共8題,共72分)17、(1)相切;(2).【解析】試題分析:(1)MN是⊙O切線,只要證明∠OCM=90°即可.(2)求出∠AOC以及BC,根據(jù)S陰=S扇形OAC﹣S△OAC計(jì)算即可.試題解析:(1)MN是⊙O切線.理由:連接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切線.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S陰=S扇形OAC﹣S△OAC=.考點(diǎn):直線與圓的位置關(guān)系;扇形面積的計(jì)算.18、(1)(2)證明見解析;(3)1.【解析】
(1)由PD切⊙O于點(diǎn)C,AD與過(guò)點(diǎn)C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=∠PCB,結(jié)合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質(zhì)可得到,又因?yàn)閠an∠ABC=,所以可得=,進(jìn)而可得到=,設(shè)PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進(jìn)而可建立關(guān)于k的方程,解方程求出k的值即可求出PC的長(zhǎng).【詳解】(1)證明:∵PD切⊙O于點(diǎn)C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設(shè)PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點(diǎn)睛】此題考查了和圓有關(guān)的綜合性題目,用到的知識(shí)點(diǎn)有:切線的性質(zhì)、相似三角形的判定與性質(zhì)、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質(zhì).19、【解析】【分析】先去分母,把分式方程化為一元一次方程,解一元一次方程,再驗(yàn)根.【詳解】解:去分母得:解得:檢驗(yàn):把代入所以:方程的解為【點(diǎn)睛】本題考核知識(shí)點(diǎn):解方式方程.解題關(guān)鍵點(diǎn):去分母,得到一元一次方程,.驗(yàn)根是要點(diǎn).20、(1)47.(2)y=3x+5【解析】試題分析:(1)根據(jù)取出黑球的概率=黑球的數(shù)量÷球的總數(shù)量得出答案;(2)根據(jù)概率的計(jì)算方法得出方程,從求出函數(shù)關(guān)系式.試題解析:(1)取出一個(gè)黑球的概率P=(2)∵取出一個(gè)白球的概率P=∴∴12+4x=7+x+y∴y與x的函數(shù)關(guān)系式為:y=3x+5.考點(diǎn):概率21、﹣2【解析】【分析】先利用完全平方公式、平方差公式進(jìn)行展開,然后合并同類項(xiàng),最后代入x、y的值進(jìn)行計(jì)算即可得.【詳解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1=x1+2xy+2y1﹣2y1+x1﹣1x1=2xy,當(dāng)x=+1,y=﹣1時(shí),原式=2×(+1)×(﹣1)=2×(3﹣2)=﹣2.【點(diǎn)睛】本題考查了整式的混合運(yùn)算——化簡(jiǎn)求值,熟練掌握完全平方公式、平方差公式是解題的關(guān)鍵.22、建筑物AB的高度約為5.9米【解析】
在△CED中,得出DE,在△CFD中,得出DF,進(jìn)而得出EF,列出方程即可得出建筑物AB的高度;【詳解】在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=-,同理:EF=BE﹣BF=,∴=-,解得:AB≈5.9(米),答:建筑物AB的高度約為5.9米.【點(diǎn)睛】考查解直角三角形的應(yīng)用,解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答問(wèn)題.23、(1);(2)【解析】
(1)連接AC,由勾股定理求出AC的長(zhǎng),再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,進(jìn)而可求出∠BAD的度數(shù);
(2)由(1)可知△A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024合同審批流程
- 北師大版四年級(jí)上冊(cè)數(shù)學(xué)第一單元 認(rèn)識(shí)更大的數(shù) 測(cè)試卷及答案【網(wǎng)校專用】
- 睿彩塑膠擴(kuò)產(chǎn)二期建設(shè)項(xiàng)目環(huán)評(píng)報(bào)告表
- 粉煤灰資源化利用制磚項(xiàng)目環(huán)評(píng)報(bào)告表
- IATF169492016汽車質(zhì)量管理體系標(biāo)準(zhǔn)試卷
- 2024年防汛抗洪應(yīng)急預(yù)案考試練習(xí)試卷附答案
- 車輛檢修工必知必會(huì)復(fù)習(xí)試題有答案
- 特種作業(yè)人員 低壓電工作業(yè) 理論考試專項(xiàng)測(cè)試卷
- 古董維護(hù)服務(wù)協(xié)議
- 評(píng)級(jí)練習(xí)試題
- 2024無(wú)障礙環(huán)境建設(shè)法知識(shí)競(jìng)賽題庫(kù)及答案
- 2024-2025學(xué)年部編版語(yǔ)文八年級(jí)上冊(cè) 期中綜合測(cè)試卷(四)
- 2024至2030年中國(guó)別墅行業(yè)投資前景分析預(yù)測(cè)及未來(lái)趨勢(shì)發(fā)展預(yù)測(cè)報(bào)告
- 初中七年級(jí)上冊(cè)綜合實(shí)踐活動(dòng) 低碳生活從我做起 教學(xué)設(shè)計(jì)
- 2024年金融貸款居間服務(wù)合同樣本(四篇)
- 2024中石油校園招聘高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 醫(yī)師定期考核(簡(jiǎn)易程序)練習(xí)及答案
- 2022-2023學(xué)年北京市海淀區(qū)清華附中八年級(jí)(上)期中數(shù)學(xué)試卷【含解析】
- 2024-2030年中國(guó)會(huì)計(jì)師事務(wù)所行業(yè)深度分析及發(fā)展前景與發(fā)展戰(zhàn)略研究報(bào)告
- 2024年國(guó)有企業(yè)新質(zhì)生產(chǎn)力調(diào)研報(bào)告
- 2024年安全員A證考試試題庫(kù)附答案
評(píng)論
0/150
提交評(píng)論