![2023-2024學(xué)年湖北省荊州開發(fā)區(qū)灘橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測(cè)模擬試題含解析_第1頁(yè)](http://file4.renrendoc.com/view4/M01/34/03/wKhkGGZT-aKAF8xzAAIqZUiKEi4955.jpg)
![2023-2024學(xué)年湖北省荊州開發(fā)區(qū)灘橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測(cè)模擬試題含解析_第2頁(yè)](http://file4.renrendoc.com/view4/M01/34/03/wKhkGGZT-aKAF8xzAAIqZUiKEi49552.jpg)
![2023-2024學(xué)年湖北省荊州開發(fā)區(qū)灘橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測(cè)模擬試題含解析_第3頁(yè)](http://file4.renrendoc.com/view4/M01/34/03/wKhkGGZT-aKAF8xzAAIqZUiKEi49553.jpg)
![2023-2024學(xué)年湖北省荊州開發(fā)區(qū)灘橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測(cè)模擬試題含解析_第4頁(yè)](http://file4.renrendoc.com/view4/M01/34/03/wKhkGGZT-aKAF8xzAAIqZUiKEi49554.jpg)
![2023-2024學(xué)年湖北省荊州開發(fā)區(qū)灘橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測(cè)模擬試題含解析_第5頁(yè)](http://file4.renrendoc.com/view4/M01/34/03/wKhkGGZT-aKAF8xzAAIqZUiKEi49555.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年湖北省荊州開發(fā)區(qū)灘橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,則().A. B. C. D.2.圓心為且過原點(diǎn)的圓的一般方程是A. B.C. D.3.函數(shù)(其中為自然對(duì)數(shù)的底數(shù))的圖象大致為()A. B. C. D.4.等差數(shù)列中,已知,且公差,則其前項(xiàng)和取最小值時(shí)的的值為()A.6 B.7 C.8 D.95.素?cái)?shù)指整數(shù)在一個(gè)大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果。哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”,如。在不超過15的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和小于18的概率是()A. B. C. D.6.若圓上有且僅有兩點(diǎn)到直線的距離等于1,則實(shí)數(shù)r的取值范圍為()A. B. C. D.7.向正方形ABCD內(nèi)任投一點(diǎn)P,則“的面積大于正方形ABCD面積的”的概率是()A. B. C. D.8.如圖,中,分別是邊的中點(diǎn),與相交于點(diǎn),則(
)A. B.C. D.9.已知向量,且,則的值為()A.1 B.3 C.1或3 D.410.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作之一,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積(弦矢矢),弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于6米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約為()A.12平方米 B.16平方米 C.20平方米 D.24平方米二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值為______.12.設(shè)數(shù)列的前項(xiàng)和為滿足:,則_________.13.函數(shù)的部分圖像如圖所示,則的值為________.14.下列說法中:①若,滿足,則的最大值為;②若,則函數(shù)的最小值為③若,滿足,則的最小值為④函數(shù)的最小值為正確的有__________.(把你認(rèn)為正確的序號(hào)全部寫上)15.若,則函數(shù)的最小值是_________.16.在三棱錐中,已知,,則三棱錐內(nèi)切球的表面積為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,已知圓過坐標(biāo)原點(diǎn)且圓心在曲線上.(1)若圓分別與軸、軸交于點(diǎn)、(不同于原點(diǎn)),求證:的面積為定值;(2)設(shè)直線與圓交于不同的兩點(diǎn)、,且,求圓的方程;(3)設(shè)直線與(2)中所求圓交于點(diǎn)、,為直線上的動(dòng)點(diǎn),直線、與圓的另一個(gè)交點(diǎn)分別為、,求證:直線過定點(diǎn).18.已知函數(shù)f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x-3對(duì)任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.19.某校為了了解甲、乙兩班的數(shù)學(xué)學(xué)習(xí)情況,從兩班各抽出10名學(xué)生進(jìn)行數(shù)學(xué)水平測(cè)試,成績(jī)?nèi)缦?單位:分):甲班:82848589798091897974乙班:90768681848786828583(1)求兩個(gè)樣本的平均數(shù);(2)求兩個(gè)樣本的方差和標(biāo)準(zhǔn)差;(3)試分析比較兩個(gè)班的學(xué)習(xí)情況.20.已知等差數(shù)列滿足,,其前項(xiàng)和為.(1)求的通項(xiàng)公式及;(2)令,求數(shù)列的前項(xiàng)和,并求的值.21.如果數(shù)列對(duì)任意的滿足:,則稱數(shù)列為“數(shù)列”.(1)已知數(shù)列是“數(shù)列”,設(shè),求證:數(shù)列是遞增數(shù)列,并指出與的大小關(guān)系(不需要證明);(2)已知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,是其前項(xiàng)的和,若數(shù)列是“數(shù)列”,求的取值范圍;(3)已知數(shù)列是各項(xiàng)均為正數(shù)的“數(shù)列”,對(duì)于取相同的正整數(shù)時(shí),比較和的大小,并說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
分子分母同時(shí)除以,利用同角三角函數(shù)的商關(guān)系化簡(jiǎn)求值即可.【詳解】因?yàn)?,所以,于是有,故本題選C.【點(diǎn)睛】本題考查了同角三角函數(shù)的商關(guān)系,考查了數(shù)學(xué)運(yùn)算能力.2、D【解析】
根據(jù)題意,求出圓的半徑,即可得圓的標(biāo)準(zhǔn)方程,變形可得其一般方程?!驹斀狻扛鶕?jù)題意,要求圓的圓心為,且過原點(diǎn),且其半徑,則其標(biāo)準(zhǔn)方程為,變形可得其一般方程是,故選.【點(diǎn)睛】本題主要考查圓的方程求法,以及標(biāo)準(zhǔn)方程化成一般方程。3、C【解析】
由題意,可知,即為奇函數(shù),排除,,又時(shí),,可排除D,即可選出正確答案.【詳解】由題意,函數(shù)定義域?yàn)?,且,即為奇函?shù),排除,,當(dāng)時(shí),,,即時(shí),,可排除D,故選C.【點(diǎn)睛】本題考查了函數(shù)圖象的識(shí)別,考查了函數(shù)奇偶性的運(yùn)用,屬于中檔題.4、C【解析】因?yàn)榈炔顢?shù)列中,,所以,有,所以當(dāng)時(shí)前項(xiàng)和取最小值.故選C.5、B【解析】
找出不超過15的素?cái)?shù),從其中任取2個(gè)共有多少種取法,找到取出的兩個(gè)和小于18的個(gè)數(shù),根據(jù)古典概型求解即可.【詳解】不超過15的素?cái)?shù)為,共6個(gè),任取2個(gè)分別為,,,,,,,,,,,,,,,共15個(gè)基本事件,其中兩個(gè)和小于18的共有11個(gè)基本事件,根據(jù)古典概型概率公式知.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于中檔題.6、B【解析】因?yàn)閳A心(5,1)到直線4x+3y+2=0的距離為=5,又圓上有且僅有兩點(diǎn)到直線4x+3y+2=0的距離為1,則4<r<6.選B.點(diǎn)睛:判斷直線與圓的位置關(guān)系的常見方法(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用Δ判斷.(3)點(diǎn)與圓的位置關(guān)系法:若直線恒過定點(diǎn)且定點(diǎn)在圓內(nèi),可判斷直線與圓相交.上述方法中最常用的是幾何法,點(diǎn)與圓的位置關(guān)系法適用于動(dòng)直線問題.7、C【解析】
由題意,求出滿足題意的點(diǎn)所在區(qū)域的面積,利用面積比求概率.【詳解】由題意,設(shè)正方形的邊長(zhǎng)為1,則正方形的面積為1,要使的面積大于正方形面積的,需要到的距離大于,即點(diǎn)所在區(qū)域面積為,由幾何概型得,的面積大于正方形面積的的概率為.故選:C.【點(diǎn)睛】本題考查幾何概型的概率求法,解題的關(guān)鍵是明確概率模型,屬于基礎(chǔ)題.8、C【解析】
利用向量的加減法的法則,利用是的重心,進(jìn)而得出,再利用向量的加減法的法則,即可得出答案.【詳解】由題意,點(diǎn)分別是邊的中點(diǎn),與相交于點(diǎn),所以是的重心,則,又因?yàn)?,所以故答案為C【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,以及三角形重心的性質(zhì),其中解答中熟記三角形重心的性質(zhì),以及向量的線性運(yùn)算法則是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、B【解析】
先求出,再利用向量垂直的坐標(biāo)表示得到關(guān)于的方程,從而求出.【詳解】因?yàn)?,所以,因?yàn)?,則,解得所以答案選B.【點(diǎn)睛】本題主要考查了平面向量的坐標(biāo)運(yùn)算,以及向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.10、C【解析】
在中,由題意OA=4,∠DAO=,即可求得OD,AD的值,根據(jù)題意可求矢和弦的值,即可利用公式計(jì)算求值得解.【詳解】如圖,由題意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面積=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故選:C【點(diǎn)睛】本題考查扇形的面積公式,考查數(shù)學(xué)閱讀能力和數(shù)學(xué)運(yùn)算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè),,,則,,可得,再根據(jù)正弦函數(shù)的定義域和值域,求得函數(shù)的最值.【詳解】解:函數(shù),設(shè),,則,,,,故當(dāng),即時(shí),函數(shù),故故答案為:;【點(diǎn)睛】本題主要考查求函數(shù)的值域,正弦函數(shù)的定義域和值域,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.12、【解析】
利用,求得關(guān)于的遞推關(guān)系式,利用配湊法證得是等比數(shù)列,由此求得數(shù)列的通項(xiàng)公式,進(jìn)而求得的表達(dá)式,從而求得的值.【詳解】當(dāng)時(shí),.由于,而,故,故答案為:.【點(diǎn)睛】本小題主要考查配湊法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.13、【解析】
由圖可得,,求出,得出,利用,然后化簡(jiǎn)即可求解【詳解】由題圖知,,所以,所以.由正弦函數(shù)的對(duì)稱性知,所以答案:【點(diǎn)睛】本題利用函數(shù)的周期特性求解,難點(diǎn)在于通過圖像求出函數(shù)的解析式和函數(shù)的最小正周期,屬于基礎(chǔ)題14、③④【解析】
①令,得出,再利用雙勾函數(shù)的單調(diào)性判斷該命題的正誤;②將函數(shù)解析式變形為,利用基本不等式判斷該命題的正誤;③由得出,得出,利用基本不等式可判斷該命題的正誤;④將代數(shù)式與代數(shù)式相乘,展開后利用基本不等式可求出的最小值,進(jìn)而判斷出該命題的正誤。【詳解】①由得,則,則,設(shè),則,則,則上減函數(shù),則上為增函數(shù),則時(shí),取得最小值,當(dāng)時(shí),,故的最大值為,錯(cuò)誤;②若,則函數(shù),則,即函數(shù)的最大值為,無最小值,故錯(cuò)誤;③若,滿足,則,則,由,得,則,當(dāng)且僅當(dāng),即得,即時(shí)取等號(hào),即的最小值為,故③正確;④,當(dāng)且僅當(dāng),即,即時(shí),取等號(hào),即函數(shù)的最小值為,故④正確,故答案為:③④?!军c(diǎn)睛】本題考查利用基本不等式來判斷命題的正誤,利用基本不等式需注意滿足“一正、二定、三相等”這三個(gè)條件,同時(shí)注意結(jié)合雙勾函數(shù)單調(diào)性來考查,屬于中等題。15、【解析】
利用基本不等式可求得函數(shù)的最小值.【詳解】,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,當(dāng)時(shí),函數(shù)的最小值是.故答案為:.【點(diǎn)睛】本題考查利用基本不等式求函數(shù)的最值,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
先計(jì)算出三棱錐的體積,利用等體積法求出三棱錐的內(nèi)切球的半徑,再求出內(nèi)切球的表面積?!驹斀狻咳D中點(diǎn)為E,并連接AE、BE在中,由等腰三角形的性質(zhì)可得,同理則在中點(diǎn)A到邊BE的距離即為點(diǎn)A到平面BCD的距離h,在中,【點(diǎn)睛】本題綜合考查了三棱錐的體積、三棱錐內(nèi)切圓的求法、球的表面積,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)證明見解析.【解析】
(1)由題意設(shè)圓心坐標(biāo)為,可得半徑為,求出圓的方程,分別令、,可得出點(diǎn)、的坐標(biāo),利用三角形的面積公式即可證明出結(jié)論成立;(2)由,知,利用兩直線垂直的等價(jià)條件:斜率之積為,解方程可得,討論的取值,求得圓心到直線的距離,即可得到所求圓的方程;(3)設(shè),、,求得、的坐標(biāo),以及直線、的方程,聯(lián)立圓的方程,利用韋達(dá)定理,結(jié)合,得出,設(shè)直線的方程為,代入圓的方程,利用韋達(dá)定理,可得、之間的關(guān)系,即可得出所求的定點(diǎn).【詳解】(1)由題意可設(shè)圓心為,則圓的半徑為,則圓的方程為,即.令,得,得;令,得,得.(定值);(2)由,知,所以,解得.當(dāng)時(shí),圓心到直線的距離小于半徑,符合題意;當(dāng)時(shí),圓心到直線的距離大于半徑,不符合題意.所以,所求圓的方程為;(3)設(shè),,,又知,,所以,.因?yàn)椋?將,代入上式,整理得.①設(shè)直線的方程為,代入,整理得.所以,.代入①式,并整理得,即,解得或.當(dāng)時(shí),直線的方程為,過定點(diǎn);當(dāng)時(shí),直線的方程為,過定點(diǎn)檢驗(yàn)定點(diǎn)和、共線,不合題意,舍去.故過定點(diǎn).【點(diǎn)睛】本題考查圓的方程的求法和運(yùn)用,注意運(yùn)用聯(lián)立直線方程和圓的方程,消去一個(gè)未知數(shù),運(yùn)用韋達(dá)定理,考查直線恒過定點(diǎn)的求法,考查運(yùn)算能力,屬于難題.18、(1){x|x≤-1或x=1};(2);(3).【解析】試題分析:(1)把代入函數(shù)解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段寫出函數(shù)的解析式,由在上單調(diào)遞增,則需第一段二次函數(shù)的對(duì)稱軸小于等于,第二段一次函數(shù)的一次項(xiàng)系數(shù)大于0,且第二段函數(shù)的最大值小于等于第一段函數(shù)的最小值,聯(lián)立不等式組后求解的取值范圍;(3)把不等式對(duì)一切實(shí)數(shù)恒成立轉(zhuǎn)化為函數(shù)對(duì)一切實(shí)數(shù)恒成立,然后對(duì)進(jìn)行分類討論,利用函數(shù)單調(diào)性求得的范圍,取并集后得答案.試題解析:(1)當(dāng)時(shí),,則;當(dāng)時(shí),由,得,解得或;當(dāng)時(shí),恒成立,∴方程的解集為或.(2)由題意知,若在R上單調(diào)遞增,則解得,∴實(shí)數(shù)的取值范圍為.(3)設(shè),則,不等式對(duì)任意恒成立,等價(jià)于不等式對(duì)任意恒成立.①若,則,即,取,此時(shí),∴,即對(duì)任意的,總能找到,使得,∴不存在,使得恒成立.②若,則,∴的值域?yàn)?,∴恒成立③若,?dāng)時(shí),單調(diào)遞減,其值域?yàn)?,由于,所以恒成立,?dāng)時(shí),由,知,在處取得最小值,令,得,又,∴,綜上,.19、(1),;(2),,;(3)乙班的總體學(xué)習(xí)情況比甲班好【解析】試題分析:每組樣本數(shù)據(jù)有10個(gè),求樣本的平均數(shù)利用平均數(shù)公式,10個(gè)數(shù)的平均數(shù)等于這10個(gè)數(shù)的和除以10;比較平均分的大小可以看出兩個(gè)班學(xué)生平均水平的高低,求樣本的方差只需使用方差公式,求這10個(gè)數(shù)與平均數(shù)的差的平方方和再除以10;比較兩組數(shù)據(jù)方差的大小就可得出兩組數(shù)據(jù)的標(biāo)準(zhǔn)差的大小,標(biāo)準(zhǔn)差較小者成績(jī)較穩(wěn)定。試題解析:(1)=×(82+1+85+89+79+80+91+89+79+74)=83.2,=×(90+76+86+81+1+87+86+82+85+83)=1.(2)=×[(82-83.2)2+(1-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36,=[(90-1)2+(76-1)2+(86-1)2+(81-1)2+(1-1)2+(87-1)2+(86-1)2+(82-1)2+(85-1)2+(83-1)2]=13.2,則s甲=≈5.13,s乙=≈3.2.(3)由于,則甲班比乙班平均水平低.由于,則甲班沒有乙班穩(wěn)定.所以乙班的總體學(xué)習(xí)情況比甲班好【點(diǎn)睛】怎樣求樣本的平均數(shù),n個(gè)數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年L-乳酸合作協(xié)議書
- 2025年二手商鋪購(gòu)房合同格式版(2篇)
- 2025年個(gè)人房屋租賃合同條款范文(2篇)
- 2025年事業(yè)單位試用期勞動(dòng)合同樣本(2篇)
- 2025年個(gè)人房買賣合同范文(2篇)
- 2025年中外合作出版合同格式范文(2篇)
- 2025年臨時(shí)城鄉(xiāng)規(guī)劃勞動(dòng)合同(2篇)
- 2025年個(gè)人技術(shù)轉(zhuǎn)讓合同參考范文(2篇)
- 武術(shù)館裝修終止合同協(xié)議書
- 服裝店裝修施工協(xié)議書
- 2025年1月浙江省高考政治試卷(含答案)
- 教體局校車安全管理培訓(xùn)
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末質(zhì)量檢測(cè)綜合物理試題(含答案)
- 導(dǎo)播理論知識(shí)培訓(xùn)班課件
- 空氣能安裝合同
- 電廠檢修安全培訓(xùn)課件
- 初二上冊(cè)的數(shù)學(xué)試卷
- 四大名繡課件-高一上學(xué)期中華傳統(tǒng)文化主題班會(huì)
- 起重機(jī)械生產(chǎn)單位題庫(kù)質(zhì)量安全員
- 高中生物選擇性必修1試題
- 20以內(nèi)加減法口算題(10000道)(A4直接打印-每頁(yè)100題)
評(píng)論
0/150
提交評(píng)論