版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省灤南縣2024年高考仿真卷數(shù)學(xué)試卷
請(qǐng)考生注意:
1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答
案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。
2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.已知空間兩不同直線(xiàn)加、n,兩不同平面e,/3,下列命題正確的是()
A.若7〃£且〃a,則mnB.若〃z,,且加_1_〃,則〃P
C.若加_1_。且加/?,則D.若機(jī)不垂直于且“<=a,則M不垂直于“
22
2.存在點(diǎn)/(%,穌)在橢圓=+當(dāng)=1(?!?〉0)上,且點(diǎn)M在第一象限,使得過(guò)點(diǎn)M且與橢圓在此點(diǎn)的切線(xiàn)
ab
干+等=1垂直的直線(xiàn)經(jīng)過(guò)點(diǎn)[o,-1],則橢圓離心率的取值范圍是()
3.執(zhí)行如圖所示的程序框圖,若輸入a=lnl0,b=\ge,則輸出的值為()
A.0B.1C.2IgeD.21gl0
4.若函數(shù)〃x)=2sin(x+2d)-osx(0<^<!)的圖象過(guò)點(diǎn)(0,2),則()
A.函數(shù)y=/(x)的值域是[0,2]B.點(diǎn)是y=/(x)的一個(gè)對(duì)稱(chēng)中心
C.函數(shù)y=/(x)的最小正周期是2?D.直線(xiàn)x=5是y=/(x)的一條對(duì)稱(chēng)軸
5.已知隨機(jī)變量。滿(mǎn)足。(。=左)=螳(1—2廣"講,,=1,2,左=0,1,2.若3<化<。2<1,則()
A.E⑸<E&),£>信)<?。〣.E信)<E㈤,哨>鶴)
C.E⑷>E㈤,£>(/<£>?)D.E⑹〉E?),。信)>D倡)
6.運(yùn)行如圖所示的程序框圖,若輸出的i的值為99,則判斷框中可以填()
A.S>1B.S>2C.5>lg99D.S>lg98
7.以下兩個(gè)圖表是2019年初的4個(gè)月我國(guó)四大城市的居民消費(fèi)價(jià)格指數(shù)(上一年同月=100)變化圖表,則以下說(shuō)
法錯(cuò)誤的是()
1030510305
10265
10225
10185
10145
10105岫
H±Wrt!月隼月月
201*1201922019*3月201
Lii■2u01年4月lkbujidil
圖表圖表二
(注:圖表一每個(gè)城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個(gè)月份的條形圖從左到右四個(gè)城市依次是
北京、天津、上海、重慶)
A.3月份四個(gè)城市之間的居民消費(fèi)價(jià)格指數(shù)與其它月份相比增長(zhǎng)幅度較為平均
B.4月份僅有三個(gè)城市居民消費(fèi)價(jià)格指數(shù)超過(guò)102
C.四個(gè)月的數(shù)據(jù)顯示北京市的居民消費(fèi)價(jià)格指數(shù)增長(zhǎng)幅度波動(dòng)較小
D.僅有天津市從年初開(kāi)始居民消費(fèi)價(jià)格指數(shù)的增長(zhǎng)呈上升趨勢(shì)
2x+y>4
8.設(shè)X,y滿(mǎn)足—1,貝!Jz=x+y的取值范圍是()
x-2y<2
A.[—5,3]B.[2,3]C.[2,+00)D.(—8,3]
9.在關(guān)于x的不等式依2+2》+I>O中,是“62+2》+1>0恒成立”的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
10.設(shè)函數(shù)Ax)的定義域?yàn)镽,滿(mǎn)足/(x+2)=2/(x),且當(dāng)xe(0,2]時(shí),/(%)=—x(x-2).若對(duì)任意xe(-8,利,
都有/(%)<—,則根的取值范圍是().
(91(19]23
A.-oo,-B.—C.(-oo,7]D.—00,——
I4」I3」3
11.已知耳,B是雙曲線(xiàn)C:j-丁2=1(?!?)的兩個(gè)焦點(diǎn),過(guò)點(diǎn)”且垂直于x軸的直線(xiàn)與。相交于AB兩點(diǎn),若
a
|AB|=V2,則AABF2的內(nèi)切圓半徑為()
竽
A3R幣「3上D.
?--上5?-----?------
333
12.已知等差數(shù)列{an},貝!I"a2>ai”是“數(shù)列{an}為單調(diào)遞增數(shù)歹U”的()
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
二、填空題:本題共4小題,每小題5分,共20分。
13.如圖,直三棱柱ABC—A4G中,NC4B=90°,AC=AB=2,=2,尸是BQ的中點(diǎn),則三棱錐C—40/
的體積為.
14.在[也的二項(xiàng)展開(kāi)式中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則該二項(xiàng)展開(kāi)式中的常數(shù)項(xiàng)等于.
15.在AABC中,角所對(duì)的邊分別為",仇c,S為AABC的面積,若c=2acos3,5=,”2一工。?,則AABC
24
的形狀為,C的大小為.
16.某校高二(4)班統(tǒng)計(jì)全班同學(xué)中午在食堂用餐時(shí)間,有7人用時(shí)為6分鐘,有14人用時(shí)7分鐘,有15人用時(shí)為
8分鐘,還有4人用時(shí)為10分鐘,則高二(4)班全體同學(xué)用餐平均用時(shí)為一分鐘.
三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。
17.(12分)已知三棱錐P-A5C(如圖一)的平面展開(kāi)圖(如圖二)中,四邊形A3C。為邊長(zhǎng)等于0的正方形,AABE
和均為正三角形,在三棱錐P-45C中:
圖二
(1)證明:平面B4C_L平面ABC;
(2)若點(diǎn)”在棱物上運(yùn)動(dòng),當(dāng)直線(xiàn)BM與平面HLC所成的角最大時(shí),求直線(xiàn)與平面所成角的正弦值.
18.(12分)如圖,在四棱錐P—ABC。中,平面43。平面BLD,AD//BC,AB=BC=AP=-AD,ZADP=3Q,
2
ZBAD=90,E是尸。的中點(diǎn).
(1)證明:PD上PB;
(2)設(shè)4)=2,點(diǎn)M在線(xiàn)段PC上且異面直線(xiàn)8M與CE所成角的余弦值為手,求二面角"-A3-0的余弦值.
19.(12分)某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線(xiàn)上隨機(jī)抽取100件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如
圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在[65,85)的為劣質(zhì)品,在[85,105)的為優(yōu)等品,在[105,115]的為特優(yōu)品,銷(xiāo)售時(shí)劣
質(zhì)品每件虧損0.8元,優(yōu)等品每件盈利4元,特優(yōu)品每件盈利6元,以這100件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代
替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.
1410
20
loo
80
fto
4()
2()
01__1_I_I-----1__>__L-
01()2(?4()5060
年皆哥用了(萬(wàn)元)
圖2
(1)求每件產(chǎn)品的平均銷(xiāo)售利潤(rùn);
(2)該企業(yè)主管部門(mén)為了解企業(yè)年?duì)I銷(xiāo)費(fèi)用X(單位:萬(wàn)元)對(duì)年銷(xiāo)售量y(單位:萬(wàn)件)的影響,對(duì)該企業(yè)近5年
的年?duì)I銷(xiāo)費(fèi)用占和年銷(xiāo)售量為,(,=1,2,3,4,5)數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.
555
立,2(%一斤)(匕一可
i=l1=1i=li=l
16.3523.40.541.62
[5]5
表中%=lnx,,匕=ln%,M,v=-^v,..
〉i=l〉z(mì)=l
根據(jù)散點(diǎn)圖判斷,y=a/可以作為年銷(xiāo)售量y(萬(wàn)件)關(guān)于年?duì)I銷(xiāo)費(fèi)用x(萬(wàn)元)的回歸方程.
①求y關(guān)于X的回歸方程;
②用所求的回歸方程估計(jì)該企業(yè)每年應(yīng)投入多少營(yíng)銷(xiāo)費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益=銷(xiāo)售
利潤(rùn)—營(yíng)銷(xiāo)費(fèi)用,取0359=36)
附:對(duì)于一組數(shù)據(jù)(4,匕),(w2,v2),,("“』"),其回歸直線(xiàn)/=0+的斜率和截距的最小二乘估計(jì)分別為
5
,工(4—碩匕―")
B=-—j-----------,a=v-pii.
£(%—方)2
Z=1
%=3+2cosOL
20.(12分)已知曲線(xiàn)C的參數(shù)方程為,9為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以x軸正半軸為極軸并
y=l+2sin(z
取相同的單位長(zhǎng)度建立極坐標(biāo)系.
(1)求曲線(xiàn)C的極坐標(biāo)方程,并說(shuō)明其表示什么軌跡;
(2)若直線(xiàn)I的極坐標(biāo)方程為sin,-2cos,=工,求曲線(xiàn)C上的點(diǎn)到直線(xiàn)I的最大距離.
P
21.(12分)已知函數(shù)〃司=一,
(1)求函數(shù)/(九)的單調(diào)區(qū)間;
4/
(2)當(dāng)0<機(jī)</時(shí),判斷函數(shù)g(x)=——〃z,(x>0)有幾個(gè)零點(diǎn),并證明你的結(jié)論;
(3)設(shè)函數(shù)〃(%)=;X--+/(X)x---f(x)-ex2,若函數(shù)/z(x)在(O,+8)為增函數(shù),求實(shí)數(shù)C的取值
/X乙X
范圍.
22.(10分)已知函數(shù)/(x)=|x+a|+|2x-5|(a〉0).
(1)當(dāng)a=2時(shí),解不等式/?(尤)25;
(2)當(dāng)2a-2]時(shí),不等式/(九)W|x+4卜恒成立,求實(shí)數(shù)。的取值范圍.
參考答案
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1、C
【解析】
因答案A中的直線(xiàn)加,〃可以異面或相交,故不正確;答案B中的直線(xiàn)”U£也成立,故不正確;答案C中的直線(xiàn)機(jī)
可以平移到平面£中,所以由面面垂直的判定定理可知兩平面〃,互相垂直,是正確的;答案D中直線(xiàn)心也有可
能垂直于直線(xiàn)",故不正確.應(yīng)選答案C.
2、D
【解析】
根據(jù)題意利用垂直直線(xiàn)斜率間的關(guān)系建立不等式再求解即可.
【詳解】
因?yàn)檫^(guò)點(diǎn)M橢圓的切線(xiàn)方程為誓+岑=1,所以切線(xiàn)的斜率為,
aba%
/3
由"#2X1_空]=_1,解得%=2<仇即/<2c2,所以?xún)?chǔ)—<2c2,
XoI?2JoJ2c
所以上〉且.
a3
故選:D
【點(diǎn)睛】
本題主要考查了建立不等式求解橢圓離心率的問(wèn)題,屬于基礎(chǔ)題.
3、A
【解析】
根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.
【詳解】
輸入a=lnlO,b=lge,
因?yàn)閘nlO>l>lge,所以由程序框圖知,
輸出的值為。一工=In10———=lnl0-lnl0=0.
bIge
故選:A
【點(diǎn)睛】
本題考查了對(duì)數(shù)式大小比較,條件程序框圖的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.
4、A
【解析】
根據(jù)函數(shù)/(%)的圖像過(guò)點(diǎn)(0,2),求出。,可得/(x)=cos2x+l,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.
【詳解】
由函數(shù)”x)=2sin(x+2e)-cosx(0<^<|)的圖象過(guò)點(diǎn)(0,2),
可得2sin26=2,即sin28=1,
20=-,e=~,
24
故/'(x)=2sin(x+26))-cosx=2cos2x=cos2x+l,
對(duì)于A,由-1VCOS2XV1,則0</(x)<2,故A正確;
對(duì)于B,當(dāng)x=?時(shí),/^=1,故B錯(cuò)誤;
對(duì)于C,T=W=兀,故c錯(cuò)誤;
2
對(duì)于D,當(dāng)X=(時(shí),=故D錯(cuò)誤;
故選:A
【點(diǎn)睛】
本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎(chǔ)題.
5、B
【解析】
根據(jù)二項(xiàng)分布的性質(zhì)可得:E(0)=Pi,D(當(dāng))=0(1—0),再根據(jù)g<B<P2<1和二次函數(shù)的性質(zhì)求解.
【詳解】
因?yàn)殡S機(jī)變量。滿(mǎn)足1?=左)=C;(l_p廣“3)=1,2,左=0,1,2.
所以。服從二項(xiàng)分布,
由二項(xiàng)分布的性質(zhì)可得:E低)=p;D值)=Pi(1-0J,
因?yàn)間<B<2<l,
所以E信)<E?),
由二次函數(shù)的性質(zhì)可得:/(%)=x(l-x),在1,1上單調(diào)遞減,
所以。侑)>。仁).
故選:B
【點(diǎn)睛】
本題主要考查二項(xiàng)分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.
6、C
【解析】
模擬執(zhí)行程序框圖,即可容易求得結(jié)果.
【詳解】
運(yùn)行該程序:
第一次,,=1,S=lg2;
3
第二次,1=2,S=lg2+lg-=lg3;
4
第三次,i=3,S=lg3+lg-=lg4,
???;
99
第九十八次,i=98,S=lg98+lg—=lg99;
98
第九十九次,1=99,S=lg99+lg^=lgl00=2,
此時(shí)要輸出i的值為99.
此時(shí)S=2>/g99.
故選:C.
【點(diǎn)睛】
本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎(chǔ)題.
7、D
【解析】
采用逐一驗(yàn)證法,根據(jù)圖表,可得結(jié)果.
【詳解】
A正確,從圖表二可知,
3月份四個(gè)城市的居民消費(fèi)價(jià)格指數(shù)相差不大
B正確,從圖表二可知,
4月份只有北京市居民消費(fèi)價(jià)格指數(shù)低于102
C正確,從圖表一中可知,
只有北京市4個(gè)月的居民消費(fèi)價(jià)格指數(shù)相差不大
D錯(cuò)誤,從圖表一可知
上海市也是從年初開(kāi)始居民消費(fèi)價(jià)格指數(shù)的增長(zhǎng)呈上升趨勢(shì)
故選:D
【點(diǎn)睛】
本題考查圖表的認(rèn)識(shí),審清題意,細(xì)心觀(guān)察,屬基礎(chǔ)題.
8、C
【解析】
首先繪制出可行域,再繪制出目標(biāo)函數(shù),根據(jù)可行域范圍求出目標(biāo)函數(shù)中z的取值范圍.
【詳解】
'2x+y>4
由題知x,V滿(mǎn)足{x-丁2-1,可行域如下圖所示,
x-2y<2
可知目標(biāo)函數(shù)在點(diǎn)A(2,0)處取得最小值,
故目標(biāo)函數(shù)的最小值為2=尤+>=2,
故2=光+丁的取值范圍是
故選:D.
【點(diǎn)睛】
本題主要考查了線(xiàn)性規(guī)劃中目標(biāo)函數(shù)的取值范圍的問(wèn)題,屬于基礎(chǔ)題.
9、C
【解析】
討論當(dāng)時(shí),℃2+2%+1>0是否恒成立;討論當(dāng)雙2+2x+l>0恒成立時(shí),。>1是否成立,即可選出正確答案.
【詳解】
解:當(dāng)時(shí),A=4—4。<0,由y=。必+2x+l開(kāi)口向上,則依之+2》+1>0恒成立;
當(dāng)依2+2%+1>0恒成立時(shí),若。=0,則2x+l>0不恒成立,不符合題意,
a>0
若a/0時(shí),要使得翻2+2》+1>0恒成立,貝!)/八,即。>1.
AA=4-4?<0
所以“a>1”是“加+2%+1>0恒成立”的充要條件.
故選:C.
【點(diǎn)睛】
本題考查了命題的關(guān)系,考查了不等式恒成立問(wèn)題.對(duì)于探究?jī)蓚€(gè)命題的關(guān)系時(shí),一般分成兩步,若pnq,則推出0
是q的充分條件;若q=p,則推出。是q的必要條件.
10、B
【解析】
求出f(x)在左e(2〃,2"+2]的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.
【詳解】
當(dāng)xe(2〃,2〃+2]時(shí),x-2ne(0,2],/(x)=2"(%—2〃)=—2"(九一2〃)(x—2〃一2),
40
/(X)max=2",X4<y<8,所以加至少小于7,此時(shí)〃無(wú))=-23(%-6)(1-8),
令/(x)=*得一23(x—6)(X—8)=[,解得1=]或X=?,結(jié)合圖象,故機(jī)
故選:B.
【點(diǎn)睛】
本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.
11、B
【解析】
首先由|A5|=拒求得雙曲線(xiàn)的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長(zhǎng)乘以?xún)?nèi)切圓的半徑即可求
解.
【詳解】
由題意5=1將%=代入雙曲線(xiàn)C的方程,得y=土,則2=0,“=應(yīng),c=g,由
aa
\AF2\-\AFi\=\BF2\-\BFl\=2a=2y/2,^^ABF2的周長(zhǎng)為
\AF2\+\BF2\+\AB\=2a+\AFl\+2a+\BFl\+\AB\=4a+2\AB\=60,
設(shè)AABK的內(nèi)切圓的半徑為廠(chǎng),則1x6后r=、2Gx后,廠(chǎng)=走,
223
故選:B
【點(diǎn)睛】
本題考查雙曲線(xiàn)的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.
12、C
【解析】
試題分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.
解:在等差數(shù)列{an}中,若a2>ai,則d>0,即數(shù)列{an}為單調(diào)遞增數(shù)列,
若數(shù)列{an}為單調(diào)遞增數(shù)列,則a2>ai,成立,
即“a2>ai”是“數(shù)列而}為單調(diào)遞增數(shù)列”充分必要條件,
故選C.
考點(diǎn):必要條件、充分條件與充要條件的判斷.
二、填空題:本題共4小題,每小題5分,共20分。
2
13、一
3
【解析】
證明AB,平面AA.QC,于是匕YGP=匕-AGC=,利用三棱錐的體積公式即可求解.
【詳解】
平面ABC,ABI平面ABC,
AB,又
A4]±ABJ_AC,A41cAe=A.
AB_L平面A41clC,
P是6a的中點(diǎn),
V=VpACC=-KACC=-------------2-2-2=—.
cC—ACp2D—2323
2
故答案為:—
3
【點(diǎn)睛】
本題考查了線(xiàn)面垂直的判定定理、三棱錐的體積公式,屬于基礎(chǔ)題.
【解析】
由題意可得〃=8,再利用二項(xiàng)展開(kāi)式的通項(xiàng)公式,求得二項(xiàng)展開(kāi)式常數(shù)項(xiàng)的值.
【詳解】
(遙-2廠(chǎng)的二項(xiàng)展開(kāi)式的中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,「.〃=89
x
,.,,,n-4r8-4r8-4r八4,口
r31A
通項(xiàng)公式為=G;(-2)、x3=(-2).C;.x令二一=°,求得廠(chǎng)=2,
可得二項(xiàng)展開(kāi)式常數(shù)項(xiàng)等于4x或=112,
故答案為1.
【點(diǎn)睛】
本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
7T
15、等腰三角形C=二
【解析】
■:c-2acosB
:.根據(jù)正弦定理可得sinC=2sinAcosB,即sin(A+B)=2sinAcosB
:.sin(A-B)=0
AA=B
AABC的形狀為等腰三角形
VS=ia2--c2
24
—a&sinC=—a2+—a2-—c2=—a2+—/72-—c2
444444
由余弦定理可得cosC="一+"「
lab
:.sinC=cosC,即tanC=1
?.?Ce(0,萬(wàn))
IT
故答案為等腰三角形,一
4
16、7.5
【解析】
分別求出所有人用時(shí)總和再除以總?cè)藬?shù)即可得到平均數(shù).
【詳解】
7x6+14x7+15x8+4x10ru
-----------------------------------=7.5
7+14+15+4
故答案為:7.5
【點(diǎn)睛】
此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計(jì)算出所有數(shù)據(jù)之和,易錯(cuò)點(diǎn)在于概念辨析不清導(dǎo)致計(jì)算出錯(cuò).
三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。
17、(1)見(jiàn)解析(2)豆H
11
【解析】
(1)設(shè)AC的中點(diǎn)為。,連接8。,尸。.由展開(kāi)圖可知====40=30=00=1.。為AC的
中點(diǎn),則有PO±AC,根據(jù)勾股定理可證得POLOB,
則P01平面ABC,即可證得平面PAC±平面ABC.
(2)由線(xiàn)面成角的定義可知ZBMO是直線(xiàn)BM與平面PAC所成的角,
B0]
且tanZBMO=----=----,ZBMO最大即為OM最短時(shí),即M是K4的中點(diǎn)
OMOM
AM
建立空間直角坐標(biāo)系,求出AM與平面的法向量機(jī)利用公式sin9=1”)即可求得結(jié)果.
\AM\\m\
【詳解】
(1)設(shè)AC的中點(diǎn)為O,連接BO,PO.
由題意,得PA=PB=PC,PO=1,AO^BO=CO^1.
在B4C中,PA=PC,O為AC的中點(diǎn),.?.POLAC,
在POB中,PO=1,OB=1,PB=4i,PO2+OB2=PB2,:.PO±OB.
ACOB=O,AC,06u平面,.?.PO,平面ABC,
POu平面PAC,二平面平面ABC.
(2)由(1)知,BO±PO,BOLAC,50,平面PAC,
ZBMO是直線(xiàn)BM與平面PAC所成的角,
且tanZBMO=2"
OM0M
二當(dāng)OM最短時(shí),即M是PA的中點(diǎn)時(shí),NBMO最大.
由尸。_L平面ABC,OB±AC,
:.PO±OB,POA-OC,
于是以O(shè)C,OB,OD所在直線(xiàn)分別為X軸,y軸,z軸建立如圖示空間直角坐標(biāo)系,
(1
則。(0,0,0),C(l,0,0),5(0,1,0),A(-l,0,0),P(0,0,l),M--,0,-
(22J
BC=(l,-l,0),PC=(1,0,-1),=AM=Q,0,1l
設(shè)平面MBC的法向量為加=(4,M,Zi),直線(xiàn)MA與平面MBC所成角為
m-BC=0,%一%=0
則由《得:<
m-MC=03%—Z]=0
令王=1,得%=1,4=3,gpm=(1,1,3).
.八|AM-m\22722
esin,=---------
則\AM\\m\11
直線(xiàn)MA與平面MBC所成角的正弦值為2叵.
11
【點(diǎn)睛】
本題考查面面垂直的證明,考查線(xiàn)面成角問(wèn)題,借助空間向量是解決線(xiàn)面成角問(wèn)題的關(guān)鍵,難度一般.
18、(1)見(jiàn)解析;(2)也
7
【解析】
(1)由平面平面上4。的性質(zhì)定理得A3,平面上4D,.?.人3,?。.在此4£>中,由勾股定理得
PDLAP,.1PD,平面?A3,即可得PDLPB;
(2)以P為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,由空間向量法和異面直線(xiàn)8M與CE所成角的余弦值為畫(huà),得點(diǎn)M的
5
坐標(biāo),從而求出二面角AB-P的余弦值.
【詳解】
(1)平面A5CD_L平面R4D,平面A5CD平面上4D=AZ),^BAD=90,所以他,相).由面面垂直的
性質(zhì)定理得AB,平面上4D,在AR4D中,AP=-AD,NADP=30,=由正弦定理可得:
2
sinZADP=-sinZAPD,
2
:.ZAPD=9Q,即PDLAP,..PD,平面PAB,.\PD±PB.
(2)以P為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則6(0,1,1),C
則=
35
5一I"
CE=fo,--,-l1--.COSBM,CE=產(chǎn)產(chǎn)
I2yCEJ2/—3a+2x店,
V2
#o=-,=而A3=(0,0,l),設(shè)平面ABM的法向量為4=(蒼y,z),由|"山”=??傻?
31333)n-AB-0
&—":z=°,令x=2,則〃=倒,6,0),取平面R鉆的法向量加=(1,0,0),則
尚亍臺(tái)當(dāng)故二面角"的余弦值為好
cosm,n=
【點(diǎn)睛】
本題考查了線(xiàn)線(xiàn)垂直的證明,考查二面角的余弦值的求法,解題時(shí)要注意空間思維能力的培養(yǎng)和向量法的合理運(yùn)用,
屬于中檔題.
19、(1)3元.(2)①>=36/②216萬(wàn)元
【解析】
(1)每件產(chǎn)品的銷(xiāo)售利潤(rùn)為X,由已知可得X的取值,由頻率分布直方圖可得劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率,從
而可得X的概率分布列,依期望公式計(jì)算出期望即為平均銷(xiāo)售利潤(rùn);
(2)①對(duì)y=取自然對(duì)數(shù),得Iny=ln(a-x")=lna+Z?lnx,
令M=lnx,v=lny,c=lna,則丫=。+次/,這就是線(xiàn)性回歸方程,由所給公式數(shù)據(jù)計(jì)算出系數(shù),得線(xiàn)性回歸方程,
從而可求得y=
111
②求出收益z=3y-x=3x36x^-x=108x^—x,可設(shè)/=戶(hù)換兀后用導(dǎo)數(shù)求出最大值?
【詳解】
解:(1)設(shè)每件產(chǎn)品的銷(xiāo)售利潤(rùn)為X,則X的可能取值為-0.8,4,6.由頻率分布直方圖可得產(chǎn)品為劣質(zhì)品、優(yōu)
等品、特優(yōu)品的概率分別為0.25、0.65、0.1.
所以P(X=—0.8)=025;P(X=4)=0.65;P(X=6)=0.1.所以X的分布列為
X-0.846
p0.250.650.1
所以E(X)=(—0.8)x0.25+4x0.65+6x0.1=3(元).
即每件產(chǎn)品的平均銷(xiāo)售利潤(rùn)為3元.
(2)①由y=a.f,得Iny=ln(a.x")=lna+blnx,
令M=lnx,v=Iny,c=lna,貝!Jv=c+加,
5
V(u.-v)
0.54_1
由表中數(shù)據(jù)可得b='--------------
£(%-方『L62-3
i=\
八23411635
則2=萬(wàn)一匕萬(wàn)=^——x-^=4.68-1.09=3.59,
535
11(1A
所以C=3.59+—a,即lng=3.59+—lnx=lne3'59?%3,
33
因?yàn)槿 ?59=36,所以夕=36,,故所求的回歸方程為>=36).
、_11
②設(shè)年收益為‘萬(wàn)兀,貝!Jz=3y-x=3x36/-x=108x^—x
令f=[〉0,貝Uz=108"/,z'=108-3/=一3僅2一36),當(dāng)0</<6時(shí),z'>0,
當(dāng)r>6時(shí),z'<0,所以當(dāng)。=6,即x=216時(shí),z有最大值432.
即該企業(yè)每年應(yīng)該投入216萬(wàn)元營(yíng)銷(xiāo)費(fèi),能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大,最大收益為432萬(wàn)元.
【點(diǎn)睛】
本題考查頻率分布直方圖,考查隨機(jī)變量概率分布列與期望,考查求線(xiàn)性回歸直線(xiàn)方程,及回歸方程的應(yīng)用.在求指
數(shù)型回歸方程時(shí),可通過(guò)取對(duì)數(shù)的方法轉(zhuǎn)化為求線(xiàn)性回歸直線(xiàn)方程,然后再求出指數(shù)型回歸方程.
20、(1)夕2_62cos?!?2sin£+4=0,表示圓心為(3,1),半徑為2的圓;(2)竽+2
【解析】
(1)根據(jù)參數(shù)得到直角坐標(biāo)系方程(尤-3)2+(y-1)2=4,再轉(zhuǎn)化為極坐標(biāo)方程得到答案.
(2)直線(xiàn)方程為y-2x=l,計(jì)算圓心到直線(xiàn)的距離加上半徑得到答案.
【詳解】
x=3+2cos。,、2,、2、、
(1)\,即(x—3「+(y—1~=4,化簡(jiǎn)得至!J:7+9―6x—2y+4=0.
y=1+2sin?'''7
即02—6℃os?!?2sin?+4=0,表示圓心為(3,1),半徑為2的圓.
(2)sin,—2COS6=L,即V—2X=1,圓心到直線(xiàn)的距離為d=二=述.
PV55
故曲線(xiàn)C上的點(diǎn)到直線(xiàn)I的最大距離為4+廠(chǎng)=述+2.
5
【點(diǎn)睛】
本題考查了參數(shù)方程,極坐標(biāo)方程,直線(xiàn)和圓的距離的最值,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.
21、(1)單調(diào)增區(qū)間(0,2),單調(diào)減區(qū)間為(—8,0),(2,+8);(2)有2個(gè)零點(diǎn),證明見(jiàn)解析;(3)c<-
【解析】
(1)對(duì)函數(shù)〃尤)求導(dǎo),利用導(dǎo)數(shù)(%)的正負(fù)判斷函數(shù)/(%)的單調(diào)區(qū)間即可;
2
⑵函數(shù)g(x)=I(x20)有2個(gè)零點(diǎn).根據(jù)函數(shù)的零點(diǎn)存在性定理即可證明;
(3)記函數(shù)2x)=/(x)—(x—工)=工一x+工,x〉0,求導(dǎo)后利用單調(diào)性求得產(chǎn)⑴?F(2)<0,由零點(diǎn)存在性定理及單
xexx
調(diào)性知存在唯一的毛6(1,2),使口(Xo)=O,求得網(wǎng)龍)為分段函數(shù),求導(dǎo)后分情況討論:①當(dāng)》>/時(shí),利用函數(shù)的單
調(diào)性將問(wèn)題轉(zhuǎn)化為2c<“x:的問(wèn)題;②當(dāng)0<》<不時(shí),當(dāng)cWO時(shí),勿⑴>0在(0,%)上恒成立,從而求得c的取
值范圍.
【詳解】
⑴由題意知心)2x,e"—="e"x(2—」九)列表如下:
X(-8,0)0(0,2)2(2,+8)
/'(x)—0+0—
/(x)極小值T極大值
所以函數(shù)/(%)的單調(diào)增區(qū)間為(0,2),單調(diào)減區(qū)間為(-8,0),(2,+8).
X_..
(2)函數(shù)g(%)=-----冽,(冗20)有2個(gè)零點(diǎn).證明如下:
ex
44
因?yàn)?<相<下時(shí),所以g(2)=下—根〉0,
ee
因?yàn)間⑴=,所以g(x)>0在(0,2)恒成立,g(x)在(0,2)上單調(diào)遞增,
由g(2)>0,g(0)=-7〃<0,且g(x)在(0,2)上單調(diào)遞增且連續(xù)知,
函數(shù)g(x)在(0,2)上僅有一個(gè)零點(diǎn),
由(1)可得x20時(shí),〃x)W/(2)=/(x)1mx,
V24
即上故xNO時(shí),優(yōu)>/,
e*金
由">必得弟〉百,平方得弟〉耳,所以g(吃)<0,
mm7m
因?yàn)間'⑺=x(j「),所以g'(x)<0在(2,a)上恒成立,
44
所以函數(shù)gO)在(2,a)上單調(diào)遞減,因?yàn)?<機(jī)</,所以赤〉2,
由g(2)>0,g(靠)<0,且g(x)在(2,一)上單調(diào)遞減且連續(xù)得
g(x)在(2,+co)上僅有一個(gè)零點(diǎn),
X2
綜上可知:函數(shù)g(%)=-—m,(120)有2個(gè)零點(diǎn).
ex
1X21
(3)記函數(shù)尸(%)=/(%)—(%—士)=L—九+±,%〉0,下面考察方(%)的符號(hào).
xexx
求導(dǎo)得/(x)=M2:x)—1一A,工〉。.
ex
當(dāng)%之2時(shí)尸(x)<0恒成立.
當(dāng)0<x<2時(shí),因?yàn)?lt;(2_x)V[X+(2-x)2=],
2
所以Ff(x)=l(2<X)=--y<0.
ex~ex~xx
k(x)<0在(0,+s)上恒成立,故E(x)在(0,+8)上單調(diào)遞減.
143
VF(l)=->0,F(2)=---<0,AF(l)-F(2)<0,又因?yàn)榇?x)在工2]上連續(xù),
ee2
所以由函數(shù)的零點(diǎn)存在性定理得存在唯一的/e(1,2),使E(x0)=0,
:.x€(0,x0),F(x)>0;xG(x0,+co),F(x)<0,
因?yàn)镮尸(%)|=X----/(X),所以旗x)=<X
X2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個(gè)人保潔服務(wù)合同范例(2篇)
- 休閑娛樂(lè)場(chǎng)所水電合同范本
- 游泳池改造監(jiān)理合同樣本
- 2025版學(xué)校食堂承包合同包含食品安全與營(yíng)養(yǎng)健康指導(dǎo)3篇
- 智慧城市建設(shè)中工業(yè)互聯(lián)網(wǎng)平臺(tái)的應(yīng)用與發(fā)展
- 課題申報(bào)參考:教育元宇宙與生成式人工智能相結(jié)合的研究教育技術(shù)學(xué)的理論與方法研究
- 2025年個(gè)人一般貨物買(mǎi)賣(mài)合同(4篇)
- 二零二五年度知識(shí)產(chǎn)權(quán)質(zhì)押融資合同原告代理詞4篇
- 2025年度珠寶行業(yè)專(zhuān)業(yè)展會(huì)組織與管理合同3篇
- 二零二五版木地板原材料采購(gòu)與庫(kù)存管理合同8篇
- 四川省成都市武侯區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末考試化學(xué)試題
- 初一到初三英語(yǔ)單詞表2182個(gè)帶音標(biāo)打印版
- 2024年秋季人教版七年級(jí)上冊(cè)生物全冊(cè)教學(xué)課件(2024年秋季新版教材)
- 環(huán)境衛(wèi)生學(xué)及消毒滅菌效果監(jiān)測(cè)
- 2024年共青團(tuán)入團(tuán)積極分子考試題庫(kù)(含答案)
- 碎屑巖油藏注水水質(zhì)指標(biāo)及分析方法
- 【S洲際酒店婚禮策劃方案設(shè)計(jì)6800字(論文)】
- 鐵路項(xiàng)目征地拆遷工作體會(huì)課件
- 醫(yī)院死亡報(bào)告年終分析報(bào)告
- 中國(guó)教育史(第四版)全套教學(xué)課件
- 2023年11月英語(yǔ)二級(jí)筆譯真題及答案(筆譯實(shí)務(wù))
評(píng)論
0/150
提交評(píng)論