




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
McDaniel&Gates–MarketingResearch,12thEdition Instructor’sManual
Copyright?2021JohnWiley&Sons,Inc. 14-
CHAPTER14
MorePowerfulStatisticalMethods
LEARNINGOBJECTIVES
1.Learnthebivariateanalysisofassociation.
2.Understandbivariateregressionanalysis.
3.Definemultivariatedataanalysis.
4.Gaininsightsintomultivariatesoftware.
5.Describemultiplediscriminantanalysis.
6.Understandclusteranalysis.
7.Understandfactoranalysis.
KEYTERMS
Bivariateregressionanalysis
Causation
Classificationmatrix
Clusteranalysis
Coefficientofdetermination
Collinearity
Conjointanalysis
Correlationanalysis
Dependentvariable
Discriminantcoefficient
Discriminantscore
Dummyvariables
Errorsumofsquares
Factor
Factoranalysis
Factorloading
Independentvariable
K-meansclusteranalysis
Metricscale
Multiplediscriminantanalysis
Multipleregressionanalysis
Multivariateanalysis
Neuralnetworks
Nominalorcategorical
Pearson’sproduct-momentcorrelation
Regressioncoefficients
Scalingofcoefficients
Scatterdiagram
Sumofsquaresduetoregression
Utilities
CHAPTERSUMMARY
Thischapterexaminestheelementsofbivariateanalysisofassociation.Bivariatetechniquesarestatisticalmethodsofanalyzingtherelationshipbetweentwovariables,independentvariablesanddependentvariables.Thebivariateregressionispresented.Ifthedataappearstobelinearwhenplottedonascatterplot,regressioncanbeused.Anexampleisthenusedtoexplorethebasicstepsinbivariateregression.
CorrelationAnalysisisalsodiscussed.Correlationisthemeasurementofthedegreetowhichchangesinonevariableareassociatedwithchangesinanother.ThePearson’sproductmomentcorrelationisusedifmetricdataareinvolved.
Thischapteralsoexaminesseveralmethodsofmultivariatedataanalysis.Thesetechniquesarecomplex,requiringcomputerstodothemathematics.Multipleregressionanalysisistheappropriatemultivariatetechniqueiftheresearcher’sgoalistoexaminetotherelationshipbetweentwoormoremetricpredictorvariablesandonmetricdependentvariables.Discriminantanalysisissimilartomultipleregressionanalysis,exceptthedependentvariableisnominalorcategoricalinnature.ClusterAnalysisisusedtoidentifyobjectsorpeoplethataresimilarinregardtocertainvariablesormeasurements.Factoranalysisisusedtosimplifydataandtosummarizemeasuresintoconcepts.Conjointanalysishelpstodeterminewhatfeaturesanewproductorserviceshouldhaveandhowitshouldbepriced.
QUESTIONSFORREVIEWANDCRITICALTHINKING
Giveexamplesofthreemarketingproblemsforwhichregressionanalysiswouldbeappropriate.
Studentanswersmayvary.Giventhetypeofanalysis,anydescriptionwouldnotethatthevariableshadtobeatleastintervalscale(metric)forPearson’sCorrelation,andmostlikelythecaseinbivariateregression,exceptintheeventoftheuseofdummyvariables.Also,thestudentwouldneedtobeclearaboutwhichvariablewasbeingpredicted(dependentvariable)andwhatvariableorvariables(independentvariables)werebeingusedtomaketheprediction.
Whatpurposedoesascatterdiagramserve?
Ascatterdiagramisusedtoplotdataobservationstodetermineiftherelationshipappearstobelinear,curvilinear,ornon-existent.Thisallowstheresearchertodeterminewhetherusinglinearmeasuresofassociation(e.g.Pearson’sproduct-momentcorrelation)wouldbeappropriate.
Explainthemeaningofthecoefficientofdetermination.Whatdoesthiscoefficienttelltheresearcheraboutthenatureoftherelationshipbetweenthedependentandindependentvariables?
Thecoefficientofdeterminationtellsthemarketingresearcherhowmuchvariationinthedependentvariablecanbeexplainedbyvariationintheindependentvariable.Itisameasureofthestrengthoftherelationship.Ifthecoefficientofdeterminationislow,theindependentvariabledoesnothavesignificantexplanatorypowerinpredictingchangesinthedependentvariable.
Distinguishbetweenmultiplediscriminantanalysisandclusteranalysis.Giveexamplesofsituationsinwhicheachmightbeused.
Multiplediscriminantanalysisanalyzestherelationshipsbetweenasetofmetricindependentvariablesandanominalorcategoricaldependentvariable.Itcantestahypothesizedrelationshipanditdescribeshowtheindependentvariablesdiscriminatebetweenthegroupsofthedependentvariable.Clusteranalysisisastatisticaltoolusedforclusteringpeopleorobjectsbasedonaparticularcriteriaorvariableinthestudy.Forexample,wemighthave15differentmeasuresofbenefitsandwanttoclusterpeopleintobenefitgroupsformarketsegmentation.Thesameconceptcouldbeusedforpersonalvalues,attitudestowardratinghealthyalternatives,orthetypesofrestaurantsfrequented.Multiplediscriminantanalysiscouldbeusedforsegmentingusersfromnonusers,lightfromheavyusers,patronsfromnon-patrons,andahostofotherdependentcategoricalvariables.Anumberofindependentvariablesetssuchasbenefits,attributes,knowledge,andpreferencescouldbeusedtopredictgroupmembership.
Whatpurposedoesmultipleregressionanalysisserve?Giveanexampleofhowitmightbeusedinmarketingresearch.Howisthestrengthofmultipleregressionmeasuresofassociationdetermined?
Multipleregressionanalysisisusedtoexaminetherelationshipbetweentwoormoremetricpredictorvariablesandonemetricdependentvariable.Itcanalsobeusedtogeneratepredictionsforthedependentvariable,givenacombinationofvaluesfortheindependentvariables.Multipleregressionanalysishasmanyapplicationsinmarketingresearch.Onegeneralapplicationrelatestodeterminingtheeffectsofvariousmarketingvariablesonsalesormarketshare.TheCoefficientofDeterminationorR2providesameasureofthepercentageofvariationinthedependentvariableexplainedbyvariationintheindependentvariable(s).
Whatisadummyvariable?Giveanexampleusingadummyvariable.
Theterm“dummyvariable”describesthecodingofnominallyscaledindependentvariablessothattheycanbeusedinregressionanalysis.Anexampleofadummyvariableforameasureoflocationofbirthwouldbe
0=bornintheUnitedStates,1=bornoutsidetheUnitedStates
Itiscriticalthatthestudentunderstandsthatdummyvariablesmustbecodedas0/1andwhenmorethantwocategoriesareused,thatmorethanonedummyvariablemustbeused.Forexample,tocodefreshman,sophomore,junior,orseniorwouldrequirethree(n-1)dummyvariables.
Asalesmanagerexaminedagedata,educationlevel,apersonalityfactorthatindicatedlevelofintrovertedness/extrovertedness,andlevelofsalesattainedbythecompany’s120-personsalesforce.Thetechniqueusedwasmultipleregressionanalysis.Afteranalyzingthedata,thesalesmanagersaid,“Itisapparenttomethatthehigherthelevelofeducationandthegreaterthedegreeofextrovertednessasalespersonhas,thehigherwillbeanindividual’slevelofsales.Inotherwords,agoodeducationandbeingextrovertedcauseapersontosellmore.”Wouldyouagreeordisagreewiththesalesmanager’sconclusions?Why?
Themanagershouldconsiderwhetherageandeducationarecorrelated(collinearity),asoldersalespersonsmayhavegreatereducationandthusthe“educationeffect”mayreallybean“age/experienceeffect.”Itisalsoplausiblethattheextrovertedsalespersonsarealsoolder,asgreaterexperiencegenerallyleadstogreaterconfidenceandperformance.Anotherimportantissueiswhetherthemanagerhascorrectlyspecifiedtheregressionmodel.Itislikelythatmanyotherfactorsthathaveasignificantimpactonsalespersonperformancehavenotbeenincludedinthemodel.Anyofthesecouldbeconfoundedwiththeincludedvariables.Perhapsmostimportantly,themanagershouldkeepinmindthatcausationcanneverbeprovenwithstatisticalevidencealone.
Thefactorsproducedandtheresultsofthefactorloadingsfromfactoranalysisaremathematicalconstructs.Itisthetaskoftheresearchertomakesenseoutofthesefactors.ThefollowingtablelistsfourfactorsproducedfromastudyofcableTVviewers.Whatlabelwouldyouputoneachofthesefourfactors?Why?
Factor1Varietyofprogrammingorrepetitiveprogramming.Allofthequestionsdealwiththemoviechannelsplayingthesamemoviesoverandoveragain.
Factor2Emotionalprogrammingor“Tear-jerking”programming.Alloftheitemsareaboutprogrammingthatelicitsanemotionalresponse.
Factor3Religiousprogramming.Thesequestionsmeasuretheviewers’opinionsofreligiousprograms.
Factor4Homeentertainment.Theitemsmeasuretheviewers’preferencesforviewingmoviesathome.
ThefollowingtableisadiscriminantanalysisthatexaminesresponsestovariousattitudinalquestionsfromcableTVusers,formercableTVusers,andpeoplewhohaveneverusedcableTV.Lookingatthevariousdiscriminantweights,whatcanyousayabouteachofthethreegroups?
For“users,”themostdiscriminatingvariablesareA19(easygoingonrepairs)andA18(norepairservice).For“formers,”themostdiscriminatingvariablesareA4andA18(burnedoutonrepeatsandnorepairservice,respectively).Forthe“nevers,”themostdiscriminatingvariablesareA7andA19(breakdowncomplainerandeasygoingonrepairs,respectively).Theseresultssuggestthatconcernsabout,orreactionsto,servicefailure(breakdowns/repairs)arethemostpredictiveofwhetheraconsumerisauser,aformeruser,orneverauser.
Thefollowingtableshowsregressioncoefficientsfortwodependentvariables.ThefirstdependentvariableiswillingnesstospendmoneyforcableTV.Theindependentvariablesareresponsestoattitudinalstatements.TheseconddependentvariableisstateddesirenevertoallowcableTVintheirhomes.Byexaminingtheregressioncoefficients,whatcanyousayaboutpersonswillingtospendmoneyforcableTVandthosewhowillnotallowcableTVintheirhomes?
Thosewhoarewillingtospendmoneyforcabletelevisionenjoywatchingmoviesandcomedy,andtheyarelikelytodosolateatnight.Theymaybesomewhatlonely(“forlorn”)andmayhaveagreaterneedforexternalsourcesof“stimulation,”suchasmightbeofferedbytelevisionprogramming.Theyarealsodissatisfiedwiththeservicelevelandwishthecablestationsofferedmorevariety.Thosewhowillnotallowcableintheirhomesdonotenjoywatchingsportingevents,objecttosexontelevision,anddonotfeelaneedformanychoicesintheirtelevisionprogramming.
Explainwhatpredictiveanalyticsencompasses.Provideexamplesofsomemarketingproblemstowhichyoumightapplypredictiveanalytics.
Predictiveanalyticsdescribesawidearrayoftoolsandtechniquesthatareusedtoextractandanalyzeinformationfromdatasets.Exampleswillvarybutmightincludesuchthingsas…
Predictingthelikelihoodofpurchasingbabyfurniture
Predictingwhomightvoteforaparticularcandidateorvoterinitiative
Predictingthepotentialmarketshareforanewproduct
Describethestepsinthepredictiveanalyticsprocess.
AcquiringaDataSet.Beforeapplyingpredictiveanalytics,anorganizationmustassembleatargetdatasetrelevanttotheproblemofinterest.
Pre-processing.Onceassembled,thedatasetmustbecleanedinaprocesswhereobservationsthatcontainexcessivenoise,errorsandmissingdataareeditedorexcluded.
Modeling.Thisistheprocessofbuildingarelationshipbetweenthedataandwhatistobepredicted.Techniquesincludeclustering,classification,andestimatingandpredicting.
ValidatingResults.Afinalstepofknowledgediscoveryfromthetargetdataandmodelingistoattempttoverifythepatternsproducedbythepredictivemodelingalgorithmsinawiderdataset.
ApplyingtheResults.Oncethemodelsandcalculationsareinplaceandhavebeenvalidated,theyareappliedtoexistingandfuturecustomerrecordstoimprovetheefficiencyandeffectivenessofmarketingefforts.
WORKINGTHENET
Takealookat.Reviewthediscussionofwhyanalyticsareimportantandusefulinthesportsworld.Lookatsomeoftheapplicationstheydiscuss.DownloadtheAgileSportsAnalyticsGuide.Reviewitandgetafeelforwhatcanbedone.
Responseswillvary.
Goto/resources/multivariate-types-methods.htmlforsomeeasytodigestandcomprehensiveinformationonmultivariateanalysiswithapplications.
Responseswillvary.
REAL-LIFERESEARCH
Case14.1–SatisfactionResearchforPizzaPronto
KeyPoints
Ar
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美觀耐用彩鋼墻面板工程承包協(xié)議
- 槽棎施工與工程監(jiān)理合同
- 餐飲企業(yè)員工派遣與餐飲設備租賃合同
- 豪車贈與及售后服務保障合同
- 金融科技公司股東退股及數(shù)據(jù)安全合同
- 財務合同部財務報表編制與披露合同
- 合同審計面試題目及答案
- 園林局值班員招聘面試題及答案
- 廣告制作合同協(xié)議書范例
- 中間人合同協(xié)議書
- 破產(chǎn)管理人工作履職報告(優(yōu)選.)
- 集裝箱碼頭堆場優(yōu)化問題
- 《redis講解》PPT課件
- 景觀園林設計收費的標準
- 京東考試答案
- 遞進式流程通用模板PPT
- 腦損傷病情觀察意識狀態(tài)的分級
- 請假通用員工請假單模板
- 客訴處理與應對技巧
- 麥凱66客戶檔案管理表格
- 框架六層中學教學樓工程施工方案
評論
0/150
提交評論