廣東省汕頭市潮南區(qū)2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第1頁
廣東省汕頭市潮南區(qū)2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第2頁
廣東省汕頭市潮南區(qū)2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第3頁
廣東省汕頭市潮南區(qū)2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第4頁
廣東省汕頭市潮南區(qū)2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省汕頭市潮南區(qū)2021-2022學(xué)年中考三模數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.學(xué)習(xí)全等三角形時,數(shù)學(xué)興趣小組設(shè)計并組織了“生活中的全等”的比賽,全班同學(xué)的比賽結(jié)果統(tǒng)計如下表:得分(分)60708090100人數(shù)(人)7121083則得分的眾數(shù)和中位數(shù)分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分2.如圖是根據(jù)我市某天七個整點時的氣溫繪制成的統(tǒng)計圖,則這七個整點時氣溫的中位數(shù)和平均數(shù)分別是()A.30,28B.26,26C.31,30D.26,223.2017年新設(shè)了雄安新區(qū),周邊經(jīng)濟受到刺激綜合實力大幅躍升,其中某地區(qū)生產(chǎn)總值預(yù)計可增長到305.5億元其中305.5億用科學(xué)記數(shù)法表示為()A.305.5×104B.3.055×102C.3.055×1010D.3.055×10114.李老師在編寫下面這個題目的答案時,不小心打亂了解答過程的順序,你能幫他調(diào)整過來嗎?證明步驟正確的順序是已知:如圖,在中,點D,E,F(xiàn)分別在邊AB,AC,BC上,且,,求證:∽.證明:又,,,,∽.A. B. C. D.5.拋物線y=mx2﹣8x﹣8和x軸有交點,則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠06.下面的幾何體中,主視圖為圓的是()A. B. C. D.7.如圖,在△ABC中,∠CAB=75°,在同一平面內(nèi),將△ABC繞點A逆時針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠CAC′為()A.30° B.35° C.40° D.50°8.已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是()A. B.C. D.9.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣210.點是一次函數(shù)圖象上一點,若點在第一象限,則的取值范圍是().A. B. C. D.11.已知一次函數(shù)y=﹣2x+3,當0≤x≤5時,函數(shù)y的最大值是()A.0B.3C.﹣3D.﹣712.若分式在實數(shù)范圍內(nèi)有意義,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為_______.14.如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.15.已知圓錐的底面半徑為40cm,母線長為90cm,則它的側(cè)面展開圖的圓心角為_______.16.已知二次函數(shù)中,函數(shù)y與x的部分對應(yīng)值如下:...-10123......105212...則當時,x的取值范圍是_________.17.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.18.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C,D均在格點上,AB與CD相交于點E.(1)AB的長等于_____;(2)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.20.(6分)如圖,AB是⊙O的直徑,D是⊙O上一點,點E是AC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.(1)求證:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的長.21.(6分)太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)22.(8分)如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設(shè).(1)求證:;(2)如果點Q在線段AD上(與點A、D不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,求BP的長.23.(8分)先化簡,再求值:,其中x=,y=.24.(10分)如圖所示,小王在校園上的A處正面觀測一座教學(xué)樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).25.(10分)已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是.26.(12分)某工程隊承擔(dān)了修建長30米地下通道的任務(wù),由于工作需要,實際施工時每周比原計劃多修1米,結(jié)果比原計劃提前1周完成.求該工程隊原計劃每周修建多少米?27.(12分)在“優(yōu)秀傳統(tǒng)文化進校園”活動中,學(xué)校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術(shù),書法,器樂,要求七年級學(xué)生人人參加,并且每人只能參加其中一項活動.教務(wù)處在該校七年級學(xué)生中隨機抽取了100名學(xué)生進行調(diào)查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請解答下列問題:請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;在參加“剪紙”活動項目的學(xué)生中,男生所占的百分比是多少?若該校七年級學(xué)生共有500人,請估計其中參加“書法”項目活動的有多少人?學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

解:根據(jù)表格中的數(shù)據(jù),可知70出現(xiàn)的次數(shù)最多,可知其眾數(shù)為70分;把數(shù)據(jù)按從小到大排列,可知其中間的兩個的平均數(shù)為80分,故中位數(shù)為80分.故選C.【點睛】本題考查數(shù)據(jù)分析.2、B.【解析】試題分析:由圖可知,把7個數(shù)據(jù)從小到大排列為22,22,23,1,28,30,31,中位數(shù)是第4位數(shù),第4位是1,所以中位數(shù)是1.平均數(shù)是(22×2+23+1+28+30+31)÷7=1,所以平均數(shù)是1.故選B.考點:中位數(shù);加權(quán)平均數(shù).3、C【解析】解:305.5億=3.055×1.故選C.4、B【解析】

根據(jù)平行線的性質(zhì)可得到兩組對應(yīng)角相等,易得解題步驟;【詳解】證明:,,又,,∽.故選B.【點睛】本題考查了相似三角形的判定與性質(zhì);關(guān)鍵是證明三角形相似.5、C【解析】

根據(jù)二次函數(shù)的定義及拋物線與x軸有交點,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍.【詳解】解:∵拋物線和軸有交點,,解得:且.故選.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的定義以及解一元一次不等式組,牢記“當時,拋物線與x軸有交點是解題的關(guān)鍵.6、C【解析】試題解析:A、的主視圖是矩形,故A不符合題意;B、的主視圖是正方形,故B不符合題意;C、的主視圖是圓,故C符合題意;D、的主視圖是三角形,故D不符合題意;故選C.考點:簡單幾何體的三視圖.7、A【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=AC,∠BAC=∠BAC',再根據(jù)兩直線平行,內(nèi)錯角相等求出∠ACC=∠CAB,然后利用等腰三角形兩底角相等求出∠CAC,再求出∠BAB=∠CAC,從而得解【詳解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′為對應(yīng)點,點A為旋轉(zhuǎn)中心,∴AC=AC′,即△ACC′為等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故選A.【點睛】此題考查等腰三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì)和平行線的性質(zhì),運用好旋轉(zhuǎn)的性質(zhì)是解題關(guān)鍵8、D【解析】

此題運用圓錐的性質(zhì),同時此題為數(shù)學(xué)知識的應(yīng)用,由題意蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短,就用到兩點間線段最短定理.【詳解】解:蝸牛繞圓錐側(cè)面爬行的最短路線應(yīng)該是一條線段,因此選項A和B錯誤,又因為蝸牛從p點出發(fā),繞圓錐側(cè)面爬行后,又回到起始點P處,那么如果將選項C、D的圓錐側(cè)面展開圖還原成圓錐后,位于母線OM上的點P應(yīng)該能夠與母線OM′上的點(P′)重合,而選項C還原后兩個點不能夠重合.故選D.點評:本題考核立意相對較新,考核了學(xué)生的空間想象能力.9、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據(jù)扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據(jù)圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關(guān)鍵.10、B【解析】試題解析:把點代入一次函數(shù)得,.∵點在第一象限上,∴,可得,因此,即,故選B.11、B【解析】【分析】由于一次函數(shù)y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數(shù)的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內(nèi)函數(shù)值的最大值.【詳解】∵一次函數(shù)y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內(nèi),x=0時,函數(shù)值最大﹣2×0+3=3,故選B.【點睛】本題考查了一次函數(shù)y=kx+b的圖象的性質(zhì):①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減小.12、D【解析】

根據(jù)分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點睛】本題考查分式有意義的條件,解題的關(guān)鍵是熟練運用分式有意義的條件,本題屬于基礎(chǔ)題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

如圖,作OH⊥CD于H,連結(jié)OC,根據(jù)垂徑定理得HC=HD,由題意得OA=4,即OP=2,在Rt△OPH中,根據(jù)含30°的直角三角形的性質(zhì)計算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理計算得到CH=,即CD=2CH=2.【詳解】解:如圖,作OH⊥CD于H,連結(jié)OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案為2.【點睛】本題主要考查了圓的垂徑定理,勾股定理和含30°角的直角三角形的性質(zhì),解此題的關(guān)鍵在于作輔助線得到直角三角形,再合理利用各知識點進行計算即可14、8﹣π【解析】分析:如下圖,過點D作DH⊥AE于點H,由此可得∠DHE=∠AOB=90°,由旋轉(zhuǎn)的性質(zhì)易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結(jié)合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長,即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.詳解:如下圖,過點D作DH⊥AE于點H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋轉(zhuǎn)的性質(zhì)結(jié)合已知條件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案為:.點睛:作出如圖所示的輔助線,利用旋轉(zhuǎn)的性質(zhì)證得△DEH≌△BAO,由此得到DH=BO=2,從而將陰影部分的面積轉(zhuǎn)化為:S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF來計算是解答本題的關(guān)鍵.15、.【解析】

圓錐的底面半徑為40cm,則底面圓的周長是80πcm,圓錐的底面周長等于側(cè)面展開圖的扇形弧長,即側(cè)面展開圖的扇形弧長是80πcm,母線長為90cm即側(cè)面展開圖的扇形的半徑長是90cm.根據(jù)弧長公式即可計算.【詳解】根據(jù)弧長的公式l=得到:

80π=,

解得n=160度.

側(cè)面展開圖的圓心角為160度.故答案為160°.16、0<x<4【解析】

根據(jù)二次函數(shù)的對稱性及已知數(shù)據(jù)可知該二次函數(shù)的對稱軸為x=2,結(jié)合表格中所給數(shù)據(jù)可得出答案.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【點睛】此題主要考查了二次函數(shù)的性質(zhì),利用圖表得出二次函數(shù)的圖象即可得出函數(shù)值得取值范圍,同學(xué)們應(yīng)熟練掌握.17、110°.【解析】

解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.18、見圖形【解析】分析:(Ⅰ)利用勾股定理計算即可;(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F,因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K,因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3;詳解:(Ⅰ)AB的長==;(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格點G、H,連接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.連接EK交BF于P,可證BP:PF=5:3.故答案為(Ⅰ);(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F.因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3.點睛:本題考查了作圖﹣應(yīng)用與設(shè)計,平行線分線段成比例定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,所以中考??碱}型.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).【解析】

(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;

(2)設(shè)圓的半徑為r,利用銳角三角函數(shù)定義求出AB的長,再利用勾股定理列出關(guān)于r的方程,求出方程的解即可得到結(jié)果.【詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設(shè)圓的半徑為,在中,,根據(jù)勾股定理得:,,在中,,,根據(jù)勾股定理得:,在中,,即,解得:.【點睛】此題考查了切線的判定與性質(zhì),以及勾股定理,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.20、(1)見解析;(2).【解析】分析:(1)由AB是直徑可得BE⊥AC,點E為AC的中點,可知BE垂直平分線段AC,從而結(jié)論可證;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,從而可設(shè)AE=x,BE=2x,由勾股定理求出AE、BE、AC的長.作CH⊥AF于H,可證Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根據(jù)平行線分線段成比例求出FH,然后利用勾股定理求出FC的值.詳解:(1)證明:連接BE.∵AB是⊙O的直徑,∴∠AEB=90°,∴BE⊥AC,而點E為AC的中點,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF為切線,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,設(shè)AE=x,則BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如圖,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,F(xiàn)C==.點睛:本題考查了圓周角定理的推論,線段垂直平分線的判定與性質(zhì),切線的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),平行線分線段成比例定理,銳角三角函數(shù)等知識點及見比設(shè)參的數(shù)學(xué)思想,得到BE垂直平分AC是解(1)的關(guān)鍵,得到Rt△ACH∽Rt△BAC是解(2)的關(guān)鍵.21、1.9米【解析】試題分析:在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數(shù)定義求出CD的長,在直角三角形ACD中,由∠ACD度數(shù),以及CD的長,利用銳角三角函數(shù)定義求出AD的長即可.試題解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC?sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD?tan∠ACD=5.9×0.32=1.888≈1.9(米),則改建后南屋面邊沿增加部分AD的長約為1.9米.考點:解直角三角形的應(yīng)用22、(1)見解析;(2);(3)當或8時,與相似.【解析】

(1)想辦法證明即可解決問題;(2)作A于M,于N.則四邊形AMPN是矩形.想辦法求出AQ、PN的長即可解決問題;(3)因為,所以,又,推出,推出相似時,與相似,分兩種情形討論即可解決問題;【詳解】(1)證明:四邊形ABCD是等腰梯形,,,,,,,.(2)解:作于M,于N.則四邊形是矩形.在中,,,,,,.(3)解:,,,相似時,與相似,,當時,,此時,當時,,此時,綜上所述,當PB=5或8時,與△相似.【點睛】本題考查幾何綜合題、圓的有關(guān)性質(zhì)、等腰梯形的性質(zhì),銳角三角函數(shù)、相似三角形的判定和性質(zhì)、平行線的性質(zhì)等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,學(xué)會添加常用輔助線,構(gòu)造直角三角形和特殊四邊形解決問題,屬于中考壓軸題.23、x+y,.【解析】試題分析:根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x、y的值代入即可解答本題.試題解析:原式===x+y,當x=,y==2時,原式=﹣2+2=.24、大型標牌上端與下端之間的距離約為3.5m.【解析】試題分析:將題目中的仰俯角轉(zhuǎn)化為直角三角形的內(nèi)角的度數(shù),分別求得CE和BE的長,然后求得DE的長,用CE的長減去DE的長即可得到上端和下端之間的距離.試題解析:設(shè)AB,CD的延長線相交于點E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE==11.54,∴CD=CE﹣DE=15﹣11.54≈3.5(m),答:大型標牌上端與下端之間的距離約為3.5m.25、(1)畫圖見解析,(2,-2);(2)畫圖見解析,(1,0);【解析】

(1)將△ABC向下平移4個單位長度得到的△A1B1C1,如圖所示,找出所求點坐標即可;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,如圖所示,找出所求點坐標即可.【詳解】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論