版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省金衢十一校2023-2024學(xué)年中考三模數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,把一個直角三角尺的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=()A.20° B.30° C.40° D.50°2.下列圖形中,可以看作中心對稱圖形的是()A. B. C. D.3.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們?yōu)槊缙缘闹睆?,且AB⊥CD.入口K位于中點,園丁在苗圃圓周或兩條交叉過道上勻速行進.設(shè)該園丁行進的時間為x,與入口K的距離為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則該園丁行進的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C4.已知二次函數(shù)(為常數(shù)),當(dāng)自變量的值滿足時,與其對應(yīng)的函數(shù)值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或65.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點C.=± D.與最接近的整數(shù)是36.中國傳統(tǒng)扇文化有著深厚的底蘊,下列扇面圖形是中心對稱圖形的是()A. B. C. D.7.如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點A,B為圓心,大于線段AB長度的一半為半徑作弧,相交于點E,F(xiàn),過點E,F(xiàn)作直線EF,交AB于點D,連接CD,則△ACD的周長為()A.13 B.17 C.18 D.258.將拋物線y=2x2向左平移3個單位得到的拋物線的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)29.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.10.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:611.為了解中學(xué)300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數(shù)有()A.12 B.48 C.72 D.9612.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知函數(shù),當(dāng)時,函數(shù)值y隨x的增大而增大.14.如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.15.如圖,A、B是反比例函數(shù)y=(k>0)圖象上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=1.則k=_______.16.下列對于隨機事件的概率的描述:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,就會有50次“正面朝上”;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是0.2;③測試某射擊運動員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85其中合理的有______(只填寫序號).17.已知線段c是線段a和b的比例中項,且a、b的長度分別為2cm和8cm,則c的長度為_____cm.18.請寫出一個一次函數(shù)的解析式,滿足過點(1,0),且y隨x的增大而減小_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在中,,,點D是BC上任意一點,將線段AD繞點A逆時針方向旋轉(zhuǎn),得到線段AE,連結(jié)EC.依題意補全圖形;求的度數(shù);若,,將射線DA繞點D順時針旋轉(zhuǎn)交EC的延長線于點F,請寫出求AF長的思路.20.(6分)若兩個不重合的二次函數(shù)圖象關(guān)于軸對稱,則稱這兩個二次函數(shù)為“關(guān)于軸對稱的二次函數(shù)”.(1)請寫出兩個“關(guān)于軸對稱的二次函數(shù)”;(2)已知兩個二次函數(shù)和是“關(guān)于軸對稱的二次函數(shù)”,求函數(shù)的頂點坐標(用含的式子表示).21.(6分)解方程.22.(8分)聲音在空氣中傳播的速度y(m/s)是氣溫x(℃)的一次函數(shù),下表列出了一組不同氣溫的音速:氣溫x(℃)05101520音速y(m/s)331334337340343(1)求y與x之間的函數(shù)關(guān)系式:(2)氣溫x=23℃時,某人看到煙花燃放5s后才聽到聲響,那么此人與煙花燃放地約相距多遠?23.(8分)數(shù)學(xué)不僅是一門學(xué)科,也是一種文化,即數(shù)學(xué)文化.數(shù)學(xué)文化包括數(shù)學(xué)史、數(shù)學(xué)美和數(shù)學(xué)應(yīng)用等多方面.古時候,在某個王國里有一位聰明的大臣,他發(fā)明了國際象棋,獻給了國王,國王從此迷上了下棋,為了對聰明的大臣表示感謝,國王答應(yīng)滿足這位大臣的一個要求.大臣說:“就在這個棋盤上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、?!ぁぁぁぁぁひ恢坏降诟?”“你真傻!就要這么一點米粒?”國王哈哈大笑.大臣說:“就怕您的國庫里沒有這么多米!”國王的國庫里真沒有這么多米嗎?題中問題就是求是多少?請同學(xué)們閱讀以下解答過程就知道答案了.設(shè),則即:事實上,按照這位大臣的要求,放滿一個棋盤上的個格子需要粒米.那么到底多大呢?借助計算機中的計算器進行計算,可知答案是一個位數(shù):,這是一個非常大的數(shù),所以國王是不能滿足大臣的要求.請用你學(xué)到的方法解決以下問題:我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?計算:某中學(xué)“數(shù)學(xué)社團”開發(fā)了一款應(yīng)用軟件,推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知一列數(shù):,其中第一項是,接下來的兩項是,再接下來的三項是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項和為的正整數(shù)冪.請直接寫出所有滿足條件的軟件激活碼正整數(shù)的值.24.(10分)問題提出(1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(N為AD的中點,MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.25.(10分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標;(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標.26.(12分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數(shù);②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數(shù)量關(guān)系,并證明.27.(12分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°?50°=40°.故選C.【點睛】本題主要考查平行線的性質(zhì),熟悉掌握性質(zhì)是關(guān)鍵.2、B【解析】
根據(jù)中心對稱圖形的概念求解.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;
B、是中心對稱圖形,故此選項正確;
C、不是中心對稱圖形,故此選項錯誤;
D、不是中心對稱圖形,故此選項錯誤.
故選:B.【點睛】此題主要考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.3、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據(jù)此逐項進行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,看懂圖形,認真分析是解題的關(guān)鍵.4、B【解析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當(dāng)h<2時,根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論;當(dāng)2≤h≤5時,由此時函數(shù)的最大值為0與題意不符,可得出該情況不存在;當(dāng)h>5時,根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論.綜上即可得出結(jié)論.詳解:如圖,當(dāng)h<2時,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當(dāng)2≤h≤5時,y=-(x-h)2的最大值為0,不符合題意;當(dāng)h>5時,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點睛:本題考查了二次函數(shù)的最值以及二次函數(shù)的性質(zhì),分h<2、2≤h≤5和h>5三種情況求出h值是解題的關(guān)鍵.5、D【解析】
根據(jù)二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數(shù)軸上存在表示的點;選項C,;選項D,與最接近的整數(shù)是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算等知識點,熟記這些知識點是解題的關(guān)鍵.6、C【解析】
根據(jù)中心對稱圖形的概念進行分析.【詳解】A、不是中心對稱圖形,故此選項錯誤;
B、不是中心對稱圖形,故此選項錯誤;
C、是中心對稱圖形,故此選項正確;
D、不是中心對稱圖形,故此選項錯誤;
故選:C.【點睛】考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.7、C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根據(jù)勾股定理求得AB=13.根據(jù)題意可知,EF為線段AB的垂直平分線,在Rt△ABC中,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得CD=AD=AB,所以△ACD的周長為AC+CD+AD=AC+AB=5+13=18.故選C.8、C【解析】
按照“左加右減,上加下減”的規(guī)律,從而選出答案.【詳解】y=2x2向左平移3個單位得到的拋物線的解析式是y=2(x+3)2,故答案選C.【點睛】本題主要考查了拋物線的平移以及拋物線解析式的變換規(guī)律,解本題的要點在于熟知“左加右減,上加下減”的變化規(guī)律.9、C【解析】
結(jié)合圓錐的平面展開圖的特征,側(cè)面展開是一個扇形,底面展開是一個圓.【詳解】解:圓錐的展開圖是由一個扇形和一個圓形組成的圖形.故選C.【點睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關(guān)鍵.注意圓錐的平面展開圖是一個扇形和一個圓組成.10、C【解析】
根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關(guān)系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設(shè)△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),解題關(guān)鍵是通過線段的比得到三角形面積的關(guān)系.11、C【解析】
解:根據(jù)圖形,身高在169.5cm~174.5cm之間的人數(shù)的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數(shù)有300×24%=72(人).故選C.12、D【解析】
先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【點睛】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≤﹣1.【解析】試題分析:∵=,a=﹣1<0,拋物線開口向下,對稱軸為直線x=﹣1,∴當(dāng)x≤﹣1時,y隨x的增大而增大,故答案為x≤﹣1.考點:二次函數(shù)的性質(zhì).14、8﹣π【解析】分析:如下圖,過點D作DH⊥AE于點H,由此可得∠DHE=∠AOB=90°,由旋轉(zhuǎn)的性質(zhì)易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結(jié)合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長,即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.詳解:如下圖,過點D作DH⊥AE于點H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋轉(zhuǎn)的性質(zhì)結(jié)合已知條件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案為:.點睛:作出如圖所示的輔助線,利用旋轉(zhuǎn)的性質(zhì)證得△DEH≌△BAO,由此得到DH=BO=2,從而將陰影部分的面積轉(zhuǎn)化為:S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF來計算是解答本題的關(guān)鍵.15、2【解析】解:分別過點A、B作x軸的垂線,垂足分別為D、E.則AD∥BE,AD=2BE=,∴B、E分別是AC、DC的中點.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,),B(2a,),∴S△AOC=AD×CO=×3a×==1,解得:k=2.16、②③【解析】
大量反復(fù)試驗下頻率穩(wěn)定值即概率.注意隨機事件發(fā)生的概率在0和1之間.根據(jù)事件的類型及概率的意義找到正確選項即可.【詳解】解:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,大約有50次“正面朝上”,此結(jié)論錯誤;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是,此結(jié)論正確;③測試某射擊運動員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85,此結(jié)論正確;故答案為:②③.【點睛】本題考查了概率的意義,解題的關(guān)鍵在于掌握計算公式.17、1【解析】
根據(jù)比例中項的定義,列出比例式即可得出中項,注意線段長度不能為負.【詳解】根據(jù)比例中項的概念結(jié)合比例的基本性質(zhì),得:比例中項的平方等于兩條線段的乘積.所以c2=2×8,解得c=±1(線段是正數(shù),負值舍去),故答案為1.【點睛】此題考查了比例線段.理解比例中項的概念,這里注意線段長度不能是負數(shù).18、y=﹣x+1【解析】
根據(jù)題意可以得到k的正負情況,然后寫出一個符合要求的解析式即可解答本題.【詳解】∵一次函數(shù)y隨x的增大而減小,∴k<0,∵一次函數(shù)的解析式,過點(1,0),∴滿足條件的一個函數(shù)解析式是y=-x+1,故答案為y=-x+1.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,寫出符合要求的函數(shù)解析式,這是一道開放性題目,答案不唯一,只要符合要去即可.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)90°;(3)解題思路見解析.【解析】
(1)將線段AD繞點A逆時針方向旋轉(zhuǎn)90°,得到線段AE,連結(jié)EC.(2)先判定△ABD≌△ACE,即可得到,再根據(jù),即可得出;(3)連接DE,由于△ADE為等腰直角三角形,所以可求;由,,可求的度數(shù)和的度數(shù),從而可知DF的長;過點A作于點H,在Rt△ADH中,由,AD=1可求AH、DH的長;由DF、DH的長可求HF的長;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的長.【詳解】解:如圖,線段AD繞點A逆時針方向旋轉(zhuǎn),得到線段AE.,,.,.,在和中,≌.,中,,,.;Ⅰ連接DE,由于為等腰直角三角形,所以可求;Ⅱ由,,可求的度數(shù)和的度數(shù),從而可知DF的長;Ⅲ過點A作于點H,在中,由,可求AH、DH的長;Ⅳ由DF、DH的長可求HF的長;Ⅴ在中,由AH和HF,利用勾股定理可求AF的長.故答案為(1)見解析;(2)90°;(3)解題思路見解析.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì)的運用,解題的關(guān)鍵是要注意對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.20、(1)任意寫出兩個符合題意的答案,如:;(2),頂點坐標為【解析】
(1)根據(jù)關(guān)于y軸對稱的二次函數(shù)的特點,只要兩個函數(shù)的頂點坐標根據(jù)y軸對稱即可;
(2)根據(jù)函數(shù)的特點得出a=m,--=0,,進一步得出m=a,n=-b,p=c,從而得到y(tǒng)1+y2=2ax2+2c,根據(jù)關(guān)系式即可得到頂點坐標.【詳解】解:(1)答案不唯一,如;
(2)∵y1=ax2+bx+c和y2=mx2+nx+p是“關(guān)于y軸對稱的二次函數(shù)”,
即a=m,--=0,,
整理得m=a,n=-b,p=c,
則y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
∴函數(shù)y1+y2的頂點坐標為(0,2c).【點睛】本題考查了二次函數(shù)的圖象與幾何變換,得出變換的規(guī)律是解題的關(guān)鍵.21、原分式方程無解.【解析】
根據(jù)解分式方程的方法可以解答本方程,去分母將分式方程化為整式方程,解整式方程,驗證.【詳解】方程兩邊乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1檢驗:當(dāng)x=1時,(x﹣1)(x+2)=0,∴原方程無解.【點睛】本題考查解分式方程,解題的關(guān)鍵是明確解放式方程的計算方法.22、(1)y=x+331;(2)1724m.【解析】
(1)先設(shè)函數(shù)一般解析式,然后根據(jù)表格中的數(shù)據(jù)選擇其中兩個帶入解析式中即可求得函數(shù)關(guān)系式(2)將x=23帶入函數(shù)解析式中求解即可.【詳解】解:(1)設(shè)y=kx+b,∴∴k=,∴y=x+331.(2)當(dāng)x=23時,y=x23+331=344.8∴5344.8=1724.∴此人與煙花燃放地相距約1724m.【點睛】此題重點考察學(xué)生對一次函數(shù)的實際應(yīng)用,熟練掌握一次函數(shù)解析式的求法是解題的關(guān)鍵.23、(1)3;(2);(3)【解析】
設(shè)塔的頂層共有盞燈,根據(jù)題意列出方程,進行解答即可.參照題目中的解題方法進行計算即可.由題意求得數(shù)列的每一項,及前n項和Sn=2n+1-2-n,及項數(shù),由題意可知:2n+1為2的整數(shù)冪.只需將-2-n消去即可,分別分別即可求得N的值【詳解】設(shè)塔的頂層共有盞燈,由題意得.解得,頂層共有盞燈.設(shè),,即:.即由題意可知:20第一項,20,21第二項,20,21,22第三項,…20,21,22…,2n?1第n項,根據(jù)等比數(shù)列前n項和公式,求得每項和分別為:每項含有的項數(shù)為:1,2,3,…,n,總共的項數(shù)為所有項數(shù)的和為由題意可知:為2的整數(shù)冪,只需將?2?n消去即可,則①1+2+(?2?n)=0,解得:n=1,總共有,不滿足N>10,②1+2+4+(?2?n)=0,解得:n=5,總共有滿足,③1+2+4+8+(?2?n)=0,解得:n=13,總共有滿足,④1+2+4+8+16+(?2?n)=0,解得:n=29,總共有不滿足,∴【點睛】考查歸納推理,讀懂題目中等比數(shù)列的求和方法是解題的關(guān)鍵.24、(1);(2);(2)小貝的說法正確,理由見解析,.【解析】
(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補全⊙O,連接AO并延長交⊙O右半側(cè)于點P,則此時A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【詳解】解:(1)如圖1,連接AC,BD,對角線交點為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補全⊙O,連接AO并延長交⊙O右半側(cè)于點P,則此時A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小貝的說法正確.理由如下,如圖1,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,由題意知,點N為AD的中點,,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,設(shè)AO=r,則ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴門角B到門窗弓形弧AD的最大距離為.【點睛】本題考查了圓與多邊形的綜合,涉及了圓的有關(guān)概念及性質(zhì)、等邊三角形的性質(zhì)、正方形和長方形的性質(zhì)、勾股定理等,靈活的利用兩點之間線段最短,添加輔助線將題中所求最大距離轉(zhuǎn)化為圓外一點到圓上的最大距離是解題的關(guān)鍵.25、(1);(2)(,0);(3)1,M(2,﹣3).【解析】試題分析:方法一:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標代入解析式中即可.(2)首先根據(jù)拋物線的解析式確定A點坐標,然后通過證明△ABC是直角三角形來推導(dǎo)出直徑AB和圓心的位置,由此確定圓心坐標.(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點M到直線BC的距離最大,若設(shè)一條平行于BC的直線,那么當(dāng)該直線與拋物線有且只有一個交點時,該交點就是點M.方法二:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標代入解析式中即可.(2)通過求出A,B,C三點坐標,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標.(3)利用三角形面積公式,過M點作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數(shù),從而求出M點.試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數(shù)解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA?OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC為直角三角形,AB為△ABC外接圓的直徑;所以該外接圓的圓心為AB的中點,且坐標為:(,0).(3)已求得:B(1,0)、C(0,﹣2),可得直線BC的解析式為:y=x﹣2;設(shè)直線l∥BC,則該直線的解析式可表示為:y=x+b,當(dāng)直線l與拋物線只有一個交點時,可列方程:x+b=,即:,且△=0;∴1﹣1×(﹣2﹣b)=0,即b=﹣1;∴直線l:y=x﹣1.所以點M即直線l和拋物線的唯一交點,有:,解得:即M(2,﹣3).過M點作MN⊥x軸于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.方法二:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC==﹣2,KBC==,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB為斜邊的直角三角形,△ABC的外接圓的圓心是AB的中點,△ABC的外接圓的圓心坐標為(,0).(3)過點M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021高考英語四川岳池縣教研室統(tǒng)練(11)及答案-閱讀類
- 《創(chuàng)新服務(wù)方式》課件
- 2025年人教版八年級數(shù)學(xué)寒假預(yù)習(xí) 第07講 平行四邊形的性質(zhì)(3個知識點+4大考點舉一反三+過關(guān)測試)
- 2025年人教版七年級數(shù)學(xué)寒假復(fù)習(xí) 專題06 幾何圖形初步(3重點串講+17考點提升+過關(guān)檢測)
- 【名師金典】2022新課標高考生物總復(fù)習(xí)限時檢測9ATP與細胞呼吸-
- 【高考復(fù)習(xí)方案】2021屆高考語文一輪復(fù)習(xí)作業(yè)答案(新課標-廣東省專用)
- 八年級歷史電子書
- 《醫(yī)學(xué)倫理討論會》課件
- 【狀元之路】2022高考地理總復(fù)習(xí)開卷速查18城市化-
- 【優(yōu)化探究】2022屆高三物理一輪復(fù)習(xí)知能檢測:3-3牛頓運動定律的綜合應(yīng)用-
- 新媒體部門崗位配置人員架構(gòu)圖
- 統(tǒng)編版語文三年級 稻草人整本書閱讀推進課課件
- 認識各種樂器
- 2023年中考語文二輪復(fù)習(xí):圖(表)文轉(zhuǎn)化之徽標圖標 練習(xí)題匯編(含答案解析)
- 2023年中考語文二輪復(fù)習(xí):名著閱讀 真題練習(xí)題匯編(含答案解析)
- 《汽車驅(qū)動橋》汽車標準
- 磁異法探測海底纜線分解課件
- 投資的本質(zhì):巴菲特的12個投資宗旨
- 護欄和扶手制作與安裝工程檢驗批質(zhì)量驗收記錄
- 工裝夾具項目開發(fā)計劃書
- 食堂安全操作規(guī)范培訓(xùn)課件(48張)
評論
0/150
提交評論