![2023-2024學年河北保定市容城博奧學校高一下數(shù)學期末復習檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view2/M00/30/2A/wKhkFmZf0JCAZvFrAAHTIopjWqA212.jpg)
![2023-2024學年河北保定市容城博奧學校高一下數(shù)學期末復習檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view2/M00/30/2A/wKhkFmZf0JCAZvFrAAHTIopjWqA2122.jpg)
![2023-2024學年河北保定市容城博奧學校高一下數(shù)學期末復習檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view2/M00/30/2A/wKhkFmZf0JCAZvFrAAHTIopjWqA2123.jpg)
![2023-2024學年河北保定市容城博奧學校高一下數(shù)學期末復習檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view2/M00/30/2A/wKhkFmZf0JCAZvFrAAHTIopjWqA2124.jpg)
![2023-2024學年河北保定市容城博奧學校高一下數(shù)學期末復習檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view2/M00/30/2A/wKhkFmZf0JCAZvFrAAHTIopjWqA2125.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年河北保定市容城博奧學校高一下數(shù)學期末復習檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則()A.-4 B.3 C.4 D.-32.已知點均在球上,,若三棱錐體積的最大值為,則球的體積為A. B. C.32 D.3.如圖,某船在A處看見燈塔P在南偏東方向,后來船沿南偏東的方向航行30km后,到達B處,看見燈塔P在船的西偏北方向,則這時船與燈塔的距離是:A.10kmB.20kmC.D.4.若一元二次不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.5.設點是棱長為的正方體的棱的中點,點在面所在的平面內,若平面分別與平面和平面所成的銳二面角相等,則點到點的最短距離是()A. B. C. D.6.已知,且,把底數(shù)相同的指數(shù)函數(shù)與對數(shù)函數(shù)圖象的公共點稱為(或)的“亮點”.當時,在下列四點,,,中,能成為的“亮點”有()A.0個 B.1個 C.2個 D.3個7.已知等比數(shù)列滿足,,則()A. B. C. D.8.在公比q為整數(shù)的等比數(shù)列{an}中,Sn是數(shù)列{an}A.q=2 B.數(shù)列SnC.S8=510 D.數(shù)列9.某中學高一年級甲班有7名學生,乙班有8名學生參加數(shù)學競賽,他們取得的成績的莖葉圖如圖所示,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是82,若從成績在的學生中隨機抽取兩名學生,則兩名學生的成績都高于82分的概率為()A. B. C. D.10.若tan()=2,則sin2α=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等比數(shù)列{an}為遞增數(shù)列,且,則數(shù)列{an}的通項公式an=______________.12.已知角滿足且,則角是第________象限的角.13.已知直線與圓相交于,兩點,則=______.14.關于的不等式的解集是,則______.15.過點作圓的兩條切線,切點分別為,則=.16.等差數(shù)列滿足,則其公差為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,底面為正方形,平面,,與交于點,,分別為,的中點.(Ⅰ)求證:平面平面;(Ⅱ)求證:∥平面;(Ⅲ)求證:平面.18.在中,內角,,所對的邊分別為,,.已知.(Ⅰ)求;(Ⅱ)若,,求的值.19.已知曲線C:x2+y2+2x+4y+m=1.(1)當m為何值時,曲線C表示圓?(2)若直線l:y=x﹣m與圓C相切,求m的值.20.已知向量,,函數(shù).(1)若,,求的值;(2)若函數(shù)在區(qū)間上是單調遞增函數(shù),求正數(shù)的取值范圍.21.如圖,在三棱柱中,側棱垂直于底面,,分別是的中點.(1)求證:平面;(2)求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
已知等式左邊用誘導公式變形后用正弦和二倍角公式化簡,右邊用切化弦法變形,再由二倍角公式化簡后可得.【詳解】,,∴,.故選:A.【點睛】本題考查誘導公式,考查二倍角公式,同角間的三角函數(shù)關系,掌握三角函數(shù)恒等變形公式,確定選用公式的順序是解題關鍵.2、A【解析】
設是的外心,則三棱錐體積最大時,平面,球心在上.由此可計算球半徑.【詳解】如圖,設是的外心,則三棱錐體積最大時,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,設球半徑為,則由得,解得,∴球體積為.故選A.【點睛】本題考查球的體積,關鍵是確定球心位置求出球的半徑.3、C【解析】
在中,利用正弦定理求出得長,即為這時船與燈塔的距離,即可得到答案.【詳解】由題意,可得,即,在中,利用正弦定理得,即這時船與燈塔的距離是,故選C.【點睛】本題主要考查了正弦定理,等腰三角形的判定與性質,以及特殊角的三角函數(shù)值的應用,其中熟練掌握正弦定理是解答本題的關鍵,著重考查了推理與運算能力,屬于基礎題.4、A【解析】
該不等式為一元二次不等式,根據(jù)一元二次函數(shù)的圖象與性質可得,的圖象是開口向下且與x軸沒有交點,從而可得關于參數(shù)的不等式組,解之可得結果.【詳解】不等式為一元二次不等式,故,根據(jù)一元二次函數(shù)的圖象與性質可得,的圖象是開口向下且與x軸沒有交點,則,解不等式組,得.故本題正確答案為A.【點睛】本題考查一元二次不等式恒成立問題,考查一元二次函數(shù)的圖象與性質,注意數(shù)形結合的運用,屬基礎題.5、B【解析】
以為原點,為軸為軸為軸,建立空間直角坐標系,計算三個平面的法向量,根據(jù)夾角相等得到關系式:,再利用點到直線的距離公式得到答案.【詳解】`以為原點,為軸為軸為軸,建立空間直角坐標系.則易知:平面的法向量為平面的法向量為設平面的法向量為:則,取平面分別與平面和平面所成的銳二面角相等或看作平面的兩條平行直線,到的距離.根據(jù)點到直線的距離公式得,點到點的最短距離都是:故答案為B【點睛】本題考查了空間直角坐標系,二面角,最短距離,意在考查學生的計算能力和空間想象能力.6、C【解析】
利用“亮點”的定義對每一個點逐一分析得解.【詳解】由題得,,由于,所以點不在函數(shù)f(x)的圖像上,所以點不是“亮點”;由于,所以點不在函數(shù)f(x)的圖像上,所以點不是“亮點”;由于,所以點在函數(shù)f(x)和g(x)的圖像上,所以點是“亮點”;由于,所以點在函數(shù)f(x)和g(x)的圖像上,所以點是“亮點”.故選C【點睛】本題主要考查指數(shù)和對數(shù)的運算,考查指數(shù)和對數(shù)函數(shù)的圖像和性質,意在考查學生對這些知識的理解掌握水平,屬于基礎題.7、C【解析】試題分析:由題意可得,所以,故,選C.考點:本題主要考查等比數(shù)列性質及基本運算.8、D【解析】
由等比數(shù)列的公比q為整數(shù),得到a2<a3,再由等比數(shù)列的性質得出a1a4=a【詳解】由等比數(shù)列的公比q為整數(shù),得到a2由等比數(shù)列的性質得出a1a4=a2aSn=a11-qnS8=2所以,數(shù)列l(wèi)gan是以故選:D.【點睛】本題考查等比數(shù)列基本性質的應用,考查等比數(shù)列求和以及等比數(shù)列的定義,充分利用等比數(shù)列下標相關的性質,將項的積進行轉化,能起到簡化計算的作用,考查計算能力,屬于中等題。9、D【解析】
計算得到,,再計算概率得到答案.【詳解】,解得;,解得;故.故選:.【點睛】本題考查了平均值,中位數(shù),概率的計算,意在考查學生的應用能力.10、B【解析】
由兩角差的正切得tan,化sin2α為tan的齊次式求解【詳解】tan()=2,則則sin2α=故選:B【點睛】本題考查兩角差的正切公式,考查二倍角公式及齊次式求值,意在考查公式的靈活運用,是基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】設數(shù)列的首項為,公比為q,則,所以,由得解得,因為數(shù)列為遞增數(shù)列,所以,,所以考點定位:本題考查等比數(shù)列,意在考查考生對等比數(shù)列的通項公式的應用能力12、三【解析】
根據(jù)三角函數(shù)在各個象限的符號,確定所在象限.【詳解】由于,所以為第三、第四象限角;由于,所以為第二、第三象限角.故為第三象限角.故答案為:三【點睛】本小題主要考查三角函數(shù)在各個象限的符號,屬于基礎題.13、.【解析】
將圓的方程化為標準方程,由點到直線距離公式求得弦心距,再結合垂徑定理即可求得.【詳解】圓,變形可得所以圓心坐標為,半徑直線,變形可得由點到直線距離公式可得弦心距為由垂徑定理可知故答案為:【點睛】本題考查了直線與圓相交時的弦長求法,點到直線距離公式的應用及垂徑定理的用法,屬于基礎題.14、【解析】
利用二次不等式解集與二次方程根的關系,由二次不等式的解集得到二次方程的根,再利用根與系數(shù)的關系,得到和的值,得到答案.【詳解】因為關于的不等式的解集是,所以關于的方程的解是,由根與系數(shù)的關系得,解得,所以.【點睛】本題考查二次不等式解集和二次方程根之間的關系,屬于簡單題.15、【解析】
如圖,連接,在直角三角形中,所以,,,故.考點:1.直線與圓的位置關系;2.平面向量的數(shù)量積.16、【解析】
首先根據(jù)等差數(shù)列的性質得到,再根據(jù)即可得到公差的值.【詳解】,解得.,所以.故答案為:【點睛】本題主要考查等差數(shù)列的性質,熟記公式為解題的關鍵,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
(I)通過證明平面來證得平面平面.(II)取中點,連接,通過證明四邊形為平行四邊形,證得,由此證得∥平面.(III)通過證明平面證得,通過計算證明證得,由此證得平面.【詳解】證明:(Ⅰ)因為平面,所以.因為,,所以平面.因為平面,所以平面平面.(Ⅱ)取中點,連結,因為為的中點所以,且.因為為的中點,底面為正方形,所以,且.所以,且.所以四邊形為平行四邊形.所以.因為平面且平面,所以平面.(Ⅲ)在正方形中,,因為平面,所以.因為,所以平面.所以.在△中,設交于.因為,且分別為的中點,所以.所以.設,由已知,所以.所以.所以.所以,且為公共角,所以△∽△.所以.所以.因為,所以平面.【點睛】本小題主要考查線面垂直、面面垂直的證明,考查線面平行的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)根據(jù)正弦定理將邊角轉化,結合三角函數(shù)性質即可求得角.(Ⅱ)先根據(jù)余弦定理求得,再由正弦定理求得,利用同角三角函數(shù)關系式求得,即可求得.即可求得的值.【詳解】(Ⅰ)在中,由正弦定理可得即因為,所以,即又因為,可得(Ⅱ)在中,由余弦定理及,,有,故由正弦定理可得因為,故因此,所以,【點睛】本題考查了正弦定理與余弦定理在解三角形中的應用,二倍角公式及正弦和角公式的用法,屬于基礎題.19、(1)當m<2時,曲線C表示圓(2)m=±3【解析】解:(1)由C:x2+y2+2x+4y+m=1,得(x+1)2+(y+2)2=2﹣m,由2﹣m>1,得m<2.∴當m<2時,曲線C表示圓;(2)圓C的圓心坐標為(﹣1,﹣2),半徑為.∵直線l:y=x﹣m與圓C相切,∴,解得:m=±3,滿足m<2.∴m=±3.【點評】本題考查圓的一般方程,考查了直線與圓位置關系的應用,訓練了點到直線的距離公式的應用,是基礎題.20、(1);(2)【解析】
(1)利用數(shù)量積公式結合二倍角公式,輔助角公式化簡函數(shù)解析式,由,結合的范圍以及平方關系得出的值,由結合兩角差的余弦公式求解即可;(2)由整體法結合正弦函數(shù)的單調性得出該函數(shù)的單調增區(qū)間,則區(qū)間應該包含在的一個增區(qū)間內,根據(jù)包含關系列出不等式組,求解即可得出正數(shù)的取值范圍.【詳解】(1)因為,所以,即.因為,所以所以.所以.(2).令,得,因為函數(shù)在區(qū)間上是單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個人普通貨物運輸合同模板(三篇)
- 2025年二手房屋買賣合同范文(2篇)
- 2025年二人合伙開店協(xié)議經(jīng)典版(三篇)
- 2025年五年級語文教學工作總結參考范文(二篇)
- 2025年個人房產抵押借款合同標準版本(三篇)
- 2025年五金配件訂購買賣合同(三篇)
- 2025年產品銷售合作協(xié)議(三篇)
- 2025年專利實施合同參考樣本(三篇)
- 歷史建筑修復外包合同
- 教育產業(yè)基地建設居間協(xié)議
- 小學數(shù)學五年級上、下冊口算題大全
- 和平精英電競賽事
- 熱應激的防與控
- 輸液港用無損傷針相關知識
- 高標準農田施工組織設計(全)
- 職業(yè)安全健康工作總結(2篇)
- 14S501-1 球墨鑄鐵單層井蓋及踏步施工
- YB 4022-1991耐火泥漿荷重軟化溫度試驗方法(示差-升溫法)
- 水土保持方案中沉沙池的布設技術
- 現(xiàn)代企業(yè)管理 (全套完整課件)
- 走進本土項目化設計-讀《PBL項目化學習設計》有感
評論
0/150
提交評論