版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年吉林省吉林地區(qū)普通高中友好學(xué)校聯(lián)合體第三十一屆高一下數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)函數(shù),則滿足的的取值范圍是()A. B. C. D.2.在中,角A,B,C所對的邊分別為a,b,c,且滿足,若,則周長的最大值為()A.9 B.10 C.11 D.123.某小組有3名男生和2名女生,從中任選2名同學(xué)去參加演講比賽,事件“至少1名女生”與事件“全是男生”()A.是互斥事件,不是對立事件B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件D.既不是互斥事件也不是對立事件4.在各項均為正數(shù)的等比數(shù)列中,公比.若,,,數(shù)列的前n項和為,則當(dāng)取最大值時,n的值為()A.8 B.9 C.8或9 D.175.的值為()A. B. C. D.6.函數(shù)的圖象是()A. B. C. D.7.經(jīng)過原點且傾斜角為的直線被圓C:截得的弦長是,則圓在軸下方部分與軸圍成的圖形的面積等于()A. B. C. D.8.用斜二測畫法畫一個水平放置的平面圖形的直觀圖是如圖所示的一個正方形,則原來的圖形是().A. B.C. D.9.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.10.已知數(shù)列滿足,,則數(shù)列的前10項和為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則_________.12.設(shè)為內(nèi)一點,且滿足關(guān)系式,則________.13.若三邊長分別為3,5,的三角形是銳角三角形,則的取值范圍為______.14.在直三棱柱中,,,,則異面直線與所成角的余弦值是_____________.15.在200m高的山頂上,測得山下一塔頂與塔底的俯角分別是30°,60°,則塔高為16.已知圓錐的表面積等于,其側(cè)面展開圖是一個半圓,則底面圓的半徑為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓:和點,,,.(1)若點是圓上任意一點,求;(2)過圓上任意一點與點的直線,交圓于另一點,連接,,求證:.18.2016年崇明區(qū)政府投資8千萬元啟動休閑體育新鄉(xiāng)村旅游項目.規(guī)劃從2017年起,在今后的若干年內(nèi),每年繼續(xù)投資2千萬元用于此項目.2016年該項目的凈收入為5百萬元,并預(yù)測在相當(dāng)長的年份里,每年的凈收入均為上一年的基礎(chǔ)上增長.記2016年為第1年,為第1年至此后第年的累計利潤(注:含第年,累計利潤=累計凈收入﹣累計投入,單位:千萬元),且當(dāng)為正值時,認(rèn)為該項目贏利.(1)試求的表達(dá)式;(2)根據(jù)預(yù)測,該項目將從哪一年開始并持續(xù)贏利?請說明理由.19.在中,角的對邊分別為,的面積是30,.(1)求;(2)若,求的值.20.如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形,由對稱性,圖中8個三角形都是全等的三角形,設(shè).(1)試用表示的面積;(2)求八角形所覆蓋面積的最大值,并指出此時的大小.21.甲,乙兩機床同時加工直徑為100cm的零件,為檢驗質(zhì)量,各從中抽取6件測量的數(shù)據(jù)為:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分別計算兩組數(shù)據(jù)的平均數(shù)及方差(2)根據(jù)計算結(jié)果判斷哪臺機床加工零件的質(zhì)量更穩(wěn)定.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
利用特殊值,對選項進行排除,由此得到正確選項.【詳解】當(dāng)時,,由此排除D選項.當(dāng)時,,由此排除B選項.當(dāng)時,,由此排除A選項.綜上所述,本小題選C.【點睛】本小題主要考查分段函數(shù)求值,考查利用特殊值法解選擇題,屬于基礎(chǔ)題.2、D【解析】
利用正弦定理和三角函數(shù)關(guān)系式,求得的值,由角的范圍求出角的的大小,再由條件和余弦定理列出方程,結(jié)合基本不等式,即可求解.【詳解】由,根據(jù)正弦定理可得,因為,所以,所以,即,又由,所以,由余弦定理可得,又因為,當(dāng)且僅當(dāng)時等號成立,又由,所以,即,所以三角形的周長的最大值為.故選:D.【點睛】本題主要考查了正弦定理、余弦定理和正弦函數(shù)的性質(zhì),以及基本不等式的應(yīng)用綜合應(yīng)用,著重考查了推理與運算能力,屬于中檔試題.3、C【解析】至少1名女生的對立事件就是全是男生.因此事件“至少1名女生”與事件“全是男生”既是互斥事件,也是對立事件4、C【解析】∵為等比數(shù)列,公比為,且∴∴,則∴∴∴,∴數(shù)列是以4為首項,公差為的等差數(shù)列∴數(shù)列的前項和為令當(dāng)時,∴當(dāng)或9時,取最大值.故選C點睛:(1)在解決等差數(shù)列、等比數(shù)列的運算問題時,有兩個處理思路:一是利用基本量將多元問題簡化為一元問題;二是利用等差數(shù)列、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差數(shù)列、等比數(shù)列問題的快捷方便的工具;(2)求等差數(shù)列的前項和最值的兩種方法:①函數(shù)法:利用等差數(shù)列前項和的函數(shù)表達(dá)式,通過配方或借助圖象求二次函數(shù)最值的方法求解;②鄰項變號法:當(dāng)時,滿足的項數(shù)使得取得最大值為;當(dāng)時,滿足的項數(shù)使得取得最小值為.5、B【解析】由誘導(dǎo)公式可得,故選B.6、D【解析】
求出分段函數(shù)的解析式,由此確定函數(shù)圖象.【詳解】由于,根據(jù)函數(shù)解析式可知,D選項符合.故選:D【點睛】本小題主要考查分段函數(shù)圖象的判斷,屬于基礎(chǔ)題.7、A【解析】
由已知利用垂徑定理求得,得到圓的半徑,畫出圖形,由扇形面積減去三角形面積求解.【詳解】解:直線方程為,圓的圓心坐標(biāo)為,半徑為.圓心到直線的距離.則,解得.圓的圓心坐標(biāo)為,半徑為1.如圖,,則,.,,圓在軸下方部分與軸圍成的圖形的面積等于.故選:.【點睛】本題考查直線與圓位置關(guān)系的應(yīng)用,考查扇形面積的求法,考查計算能力,屬于中檔題.8、A【解析】試題分析:由斜二測畫法的規(guī)則知與x'軸平行或重合的線段與x’軸平行或重合,其長度不變,與y軸平行或重合的線段與x’軸平行或重合,其長度變成原來的一半,正方形的對角線在y'軸上,可求得其長度為,故在平面圖中其在y軸上,且其長度變?yōu)樵瓉淼?倍,長度為2,觀察四個選項,A選項符合題意.故應(yīng)選A.考點:斜二測畫法.點評:注意斜二測畫法中線段長度的變化.9、D【解析】
由,,,得解.【詳解】解:因為,,,所以,故選:D.【點睛】本題考查了指數(shù)冪,對數(shù)值的大小關(guān)系,屬基礎(chǔ)題.10、C【解析】
由判斷出數(shù)列是等比數(shù)列,再求出,利用等比數(shù)列前項和公式求解即可.【詳解】由,得,所以數(shù)列是以為公比的等比數(shù)列,又,所以,由等比數(shù)列前項和公式,.故選:C【點睛】本題主要考查等比數(shù)列的定義和等比數(shù)列前項和公式的應(yīng)用,考查學(xué)生的計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用誘導(dǎo)公式求解即可【詳解】,故答案為:【點睛】本題考查誘導(dǎo)公式,是基礎(chǔ)題12、【解析】
由題意將已知中的向量都用為起點來表示,從而得到32,分別取AB、AC的中點為D、E,可得2,利用平面知識可得S△AOB與S△AOC及S△BOC與S△ABC的關(guān)系,可得所求.【詳解】∵,∴32,∴2,分別取AB、AC的中點為D、E,∴2,∴S△AOBS△ABFS△ABCS△ABC;S△AOCS△ACFS△ABCS△ABC;S△BOCS△ABC,∴故答案為:.【點睛】本題考查向量的加減法運算,體現(xiàn)了數(shù)形結(jié)合思想,解答本題的關(guān)鍵是利用向量關(guān)系畫出助解圖形.13、【解析】
由三邊長分別為3,5,的三角形是銳角三角形,若5是最大邊,則,解得范圍,若是最大邊,則,解得范圍,即可得出.【詳解】解:由三邊長分別為3,5,的三角形是銳角三角形,若5是最大邊,則,解得.若是最大邊,則,解得.綜上可得:的取值范圍為.故答案為:.【點睛】本題考查了不等式的性質(zhì)與解法、余弦定理、分類討論方法,考查了推理能力與計算能力,屬于中檔題.14、【解析】
先找出線面角,運用余弦定理進行求解【詳解】連接交于點,取中點,連接,則,連接為異面直線與所成角在中,,,同理可得,,異面直線與所成角的余弦值是故答案為【點睛】本題主要考查了異面直線所成的角,考查了空間想象能力,運算能力和推理論證能力,屬于基礎(chǔ)題.15、【解析】
試題分析:根據(jù)題意,設(shè)塔高為x,則可知,a表示的為塔與山之間的距離,可以解得塔高為.考點:解三角形的運用點評:主要是考查了解三角形中的余弦定理和正弦定理的運用,屬于中檔題.16、【解析】
設(shè)出底面圓的半徑,用半徑表示出圓錐的母線,再利用表面積,解出半徑?!驹斀狻吭O(shè)圓錐的底面圓的半徑為,母線為,則底面圓面積為,周長為,則解得故填2【點睛】本題考查根據(jù)圓錐的表面積求底面圓半徑,屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2(2)見證明【解析】
(1)設(shè)點的坐標(biāo)為,得出,利用兩點間的距離公式以及將關(guān)系式代入可求出的值;(2)對直線的斜率是否存在分類討論。①直線的斜率不存在時,由點、的對稱性證明結(jié)論;②直線的斜率不存在時,設(shè)直線的方程為,設(shè)點、,將直線的方程與圓的方程聯(lián)立,列出韋達(dá)定理,通過計算直線和的斜率之和為零來證明結(jié)論成立?!驹斀狻浚?)證明:設(shè),因為點是圓上任意一點,所以,所以,(2)①當(dāng)直線的傾斜角為時,因為點、關(guān)于軸對稱,所以.②當(dāng)直線的傾斜角不等于時,設(shè)直線的斜率為,則直線的方程為.設(shè)、,則,.,,.【點睛】本題考查直線與圓的位置關(guān)系問題,考查兩點間的距離公式、韋達(dá)定理在直線與圓的綜合問題的處理,本題的關(guān)鍵在于將角的關(guān)系轉(zhuǎn)化為斜率之間的關(guān)系來處理,另外,利用韋達(dá)定理求解直線與圓的綜合問題時,其基本步驟如下:(1)設(shè)直線的方程以及直線與圓的兩交點坐標(biāo)、;(2)將直線方程與圓的方程聯(lián)立,列出韋達(dá)定理;(3)將問題對象利用代數(shù)式或等式表示,并進行化簡;(4)將韋達(dá)定理代入(3)中的代數(shù)式或等式進行化簡計算。18、(1);(2).【解析】試題分析:(1)由題意知,第一年至此后第年的累計投入為(千萬元),第年至此后第年的累計凈收入為,利用等比數(shù)列數(shù)列的求和公式可得;(2)由,利用指數(shù)函數(shù)的單調(diào)性即可得出.試題解析:(1)由題意知,第1年至此后第n(n∈N*)年的累計投入為8+2(n﹣1)=2n+6(千萬元),第1年至此后第n(n∈N*)年的累計凈收入為+×+×+…+×=(千萬元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千萬元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴當(dāng)n≤3時,f(n+1)﹣f(n)<1,故當(dāng)n≤2時,f(n)遞減;當(dāng)n≥2時,f(n+1)﹣f(n)>1,故當(dāng)n≥2時,f(n)遞增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴該項目將從第8年開始并持續(xù)贏利.答:該項目將從2123年開始并持續(xù)贏利;方法二:設(shè)f(x)=﹣2x﹣7(x≥1),則f′(x)=,令f'(x)=1,得=≈=5,∴x≈2.從而當(dāng)x∈[1,2)時,f'(x)<1,f(x)遞減;當(dāng)x∈(2,+∞)時,f'(x)>1,f(x)遞增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴該項目將從第8年開始并持續(xù)贏利.答:該項目將從2123年開始并持續(xù)贏利.19、(1)144;(2)5.【解析】
(1)由同角的三角函數(shù)關(guān)系,由,可以求出的值,再由面積公式可以求出的值,最后利用平面向量數(shù)量積的公式求出的值;(2)由(1)可知的值,再結(jié)合已知,可以求出的值,由余弦定理可以求出的值.【詳解】(1),又因為的面積是30,所以,因此(2)由(1)可知,與聯(lián)立,組成方程組:,解得或,不符合題意舍去,由余弦定理可知:.【點睛】本題考查了同角的三角函數(shù)關(guān)系、三角形面積公式、余弦定理、平面向量的數(shù)量積運算,本題求,可以不求出的值也可以,計算如下:20、(1),.(2)時,達(dá)到最大此時八角形所覆蓋面積前最大值為.【解析】
(1)注意到,從而的周長為,故,所以,注意.(2)令,則,根據(jù)可求最大值.【詳解】(1)設(shè)為,,,,,(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 特教元宵節(jié)主題課程設(shè)計
- 2024年版城市基礎(chǔ)設(shè)施建設(shè)項目合作合同
- 2024年農(nóng)業(yè)科技園區(qū)種子化肥農(nóng)藥采購與服務(wù)協(xié)議9篇
- 2024年聯(lián)營企業(yè)雙方保底利潤協(xié)議版B版
- 籃球課程設(shè)計怎么畫
- 真愛夢想校本課程設(shè)計
- 2024年度大蒜品牌授權(quán)與聯(lián)合營銷合同3篇
- 2024年股權(quán)轉(zhuǎn)讓居間保密協(xié)議
- 2024年版專業(yè)礦山工程總承包合同一
- 2024年度新型地下空間租賃合同范本3篇
- 學(xué)術(shù)不端行為治理研究
- 福建南平武夷高新技術(shù)產(chǎn)業(yè)控股集團有限公司招聘筆試沖刺題2024
- GB/T 45083-2024再生資源分揀中心建設(shè)和管理規(guī)范
- 《村衛(wèi)生室基本公共衛(wèi)生服務(wù)管理規(guī)范》
- 電子技術(shù)基礎(chǔ)練習(xí)題庫(含參考答案)
- 兒童流感診療及預(yù)防指南(2024醫(yī)生版)
- 語文中考《非連續(xù)性文本閱讀》專題精練(含答案解析)
- 沐足行業(yè)嚴(yán)禁黃賭毒承諾書
- 上海市市轄區(qū)(2024年-2025年小學(xué)六年級語文)統(tǒng)編版期末考試((上下)學(xué)期)試卷及答案
- 足浴店入股合同范例
- 完整風(fēng)電場運維服務(wù)合同
評論
0/150
提交評論