版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆上海市師范大學(xué)附屬中學(xué)數(shù)學(xué)高一下期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.高鐵、掃碼支付、共享單車、網(wǎng)購被稱為中國的“新四大發(fā)明”,為評估共享單車的使用情況,選了座城市作實驗基地,這座城市共享單車的使用量(單位:人次/天)分別為,,…,,下面給出的指標(biāo)中可以用來評估共享單車使用量的穩(wěn)定程度的是()A.,,…,的標(biāo)準(zhǔn)差 B.,,…,的平均數(shù)C.,,…,的最大值 D.,,…,的中位數(shù)2.已知集合,,則()A. B.C. D.3.中,分別是內(nèi)角的對邊,且,,則等于()A. B. C. D.4.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如.在不超過30的素數(shù)中,隨機(jī)選取兩個不同的數(shù),其和等于30的概率是A. B. C. D.5.已知直線與圓交于M,N兩點,若,則k的值為()A. B. C. D.6.集合,則()A. B. C. D.7.設(shè)是兩條不同的直線,是兩個不同的平面,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則8.已知平面向量,,,,在下列命題中:①存在唯一的實數(shù),使得;②為單位向量,且,則;③;④與共線,與共線,則與共線;⑤若且,則.正確命題的序號是()A.①④⑤ B.②③④ C.①⑤ D.②③9.在空間中,給出下列說法:①平行于同一個平面的兩條直線是平行直線;②垂直于同一條直線的兩個平面是平行平面;③若平面內(nèi)有不共線的三點到平面的距離相等,則;④過平面的一條斜線,有且只有一個平面與平面垂直.其中正確的是()A.①③ B.②④ C.①④ D.②③10.某公司的班車在和三個時間點發(fā)車.小明在至之間到達(dá)發(fā)車站乘坐班車,且到達(dá)發(fā)車站的時刻是隨機(jī)的,則他等車時間不超過分鐘的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,為了測量樹木的高度,在處測得樹頂?shù)难鼋菫?,在處測得樹頂?shù)难鼋菫椋裘?,則樹高為______米.12.不等式的解為_______.13.設(shè),,為三條不同的直線,,為兩個不同的平面,下列命題中正確的是______.(1)若,,,則;(2)若,,,則;(3)若,,,,則;(4)若,,,則.14.在中,為上的一點,且,是的中點,過點的直線,是直線上的動點,,則_________.15.?dāng)?shù)列中,為的前項和,若,則____.16.下列命題中:①若,則的最大值為;②當(dāng)時,;③的最小值為;④當(dāng)且僅當(dāng)均為正數(shù)時,恒成立.其中是真命題的是__________.(填上所有真命題的序號)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,已知,,且AC邊的中點M在y軸上,BC邊的中點N在x軸上,求:頂點C的坐標(biāo);
直線MN的方程.18.某生產(chǎn)廠家生產(chǎn)一種產(chǎn)品的固定成本為4萬元,并且每生產(chǎn)1百臺產(chǎn)品需增加投入0.8萬元.已知銷售收入(萬元)滿足(其中是該產(chǎn)品的月產(chǎn)量,單位:百臺),假定生產(chǎn)的產(chǎn)品都能賣掉,請完成下列問題:(1)將利潤表示為月產(chǎn)量的函數(shù);(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?19.已知向量,(1)若,求;(2)若,求.20.已知公差不為零的等差數(shù)列中,,且成等比數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令,求數(shù)列的前項和.21.已知,且,向量,.(1)求函數(shù)的解析式,并求當(dāng)時,的單調(diào)遞增區(qū)間;(2)當(dāng)時,的最大值為5,求的值;(3)當(dāng)時,若不等式在上恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
利用方差或標(biāo)準(zhǔn)差表示一組數(shù)據(jù)的穩(wěn)定程度可得出選項.【詳解】表示一組數(shù)據(jù)的穩(wěn)定程度是方差或標(biāo)準(zhǔn)差,標(biāo)準(zhǔn)差越小,數(shù)據(jù)越穩(wěn)定故選:A【點睛】本題考查了用樣本估計總體,需掌握住數(shù)據(jù)的穩(wěn)定程度是用方差或標(biāo)準(zhǔn)差估計的,屬于基礎(chǔ)題.2、A【解析】
先化簡集合,根據(jù)交集與并集的概念,即可得出結(jié)果。【詳解】因為,,所以,.故選A【點睛】本題主要考查集合的基本運算,熟記概念即可,屬于基礎(chǔ)題型.3、D【解析】試題分析:由已知得,解得(舍)或,又因為,所以,由正弦定理得.考點:1、倍角公式;2、正弦定理.4、C【解析】分析:先確定不超過30的素數(shù),再確定兩個不同的數(shù)的和等于30的取法,最后根據(jù)古典概型概率公式求概率.詳解:不超過30的素數(shù)有2,3,5,7,11,13,17,19,23,29,共10個,隨機(jī)選取兩個不同的數(shù),共有種方法,因為,所以隨機(jī)選取兩個不同的數(shù),其和等于30的有3種方法,故概率為,選C.點睛:古典概型中基本事件數(shù)的探求方法:(1)列舉法.(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復(fù)雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.5、C【解析】
先求得圓心到直線的距離,再根據(jù)圓的弦長公式求解.【詳解】圓心到直線的距離為:由圓的弦長公式:得解得故選:C【點睛】本題主要考查了直線與圓的位置關(guān)系,還考查了運算求解的能力,屬于基礎(chǔ)題.6、C【解析】
先求解不等式化簡集合A和B,再根據(jù)集合的交集運算求得結(jié)果即可.【詳解】因為集合,集合或,所以.故本題正確答案為C.【點睛】本題考查一元二次不等式,分式不等式的解法和集合的交集運算,注意認(rèn)真計算,仔細(xì)檢查,屬基礎(chǔ)題.7、D【解析】
對于A,利用線面平行的判定可得A正確.對于B,利用線面垂直的性質(zhì)可得B正確.對于C,利用面面垂直的判定可得C正確.根據(jù)平面與平面的位置關(guān)系即可判斷D不正確.【詳解】對于A,根據(jù)平面外的一條直線與平面內(nèi)的一條直線平行,則這條直線平行于這個平面,可判定A正確.對于B,根據(jù)垂直于同一個平面的兩條直線平行,判定B正確.對于C,根據(jù)一個平面過另一個平面的垂線,則這兩個平面垂直,可判定C正確.對于D,若,則或相交,所以D不正確.故選:D【點睛】本題主要考查了線面平行和面面垂直的判定,同時考查了線面垂直的性質(zhì),屬于中檔題.8、D【解析】
分別根據(jù)向量的平行、模、數(shù)量積即可解決。【詳解】當(dāng)為零向量時不滿足,①錯;當(dāng)為零向量時④錯,對于⑤:兩個向量相乘,等于模相乘再乘以夾角的余弦值,與有可能夾角不一樣或者的模不一樣,兩個向量相等要保證方向、模都相同才可以,因此選擇D【點睛】本題主要考查了向量的共線,零向量。屬于基礎(chǔ)題。9、B【解析】
說法①:可以根據(jù)線面平行的判定理判斷出本說法是否正確;說法②:根據(jù)線面垂直的性質(zhì)和面面平行的判定定理可以判斷出本說法是否正確;說法③:當(dāng)與相交時,是否在平面內(nèi)有不共線的三點到平面的距離相等,進(jìn)行判斷;說法④:可以通過反證法進(jìn)行判斷.【詳解】①平行于同一個平面的兩條直線可能平行、相交或異面,不正確;易知②正確;③若平面內(nèi)有不共線的三點到平面的距離相等,則與可能平行,也可能相交,不正確;易知④正確.故選B.【點睛】本題考查了線線位置關(guān)系、面面位置關(guān)系的判斷,分類討論是解題的關(guān)鍵,反證法是經(jīng)常用到的方程.10、A【解析】
根據(jù)題意得小明等車時間不超過分鐘的總的時間段,再由比值求得.【詳解】小明等車時間不超過分鐘,則他需在至到,或至到,共計分鐘,所以概率故選A.【點睛】本題考查幾何概型,關(guān)鍵找到滿足條件的時間段,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先計算,再計算【詳解】在處測得樹頂?shù)难鼋菫?,在處測得樹頂?shù)难鼋菫閯t在中,故答案為【點睛】本題考查了三角函數(shù)的應(yīng)用,也可以用正余弦定理解答.12、【解析】
把不等式轉(zhuǎn)化為,即可求解.【詳解】由題意,不等式,等價于,解得.即不等式的解為故答案為:.【點睛】本題主要考查了分式不等式的求解,其中解答中熟記分式不等式的解法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、(1)【解析】
利用線線平行的傳遞性、線面垂直的判定定理判定.【詳解】(1),,,則,正確(2)若,,,則,錯誤(3)若,則不成立,錯誤(4)若,,,則,錯誤【點睛】本題主要考查線面垂直的判定定理判定,考查了空間想象能力,屬于中檔題.14、【解析】
用表示出,由對應(yīng)相等即可得出.【詳解】因為,所以解得得.【點睛】本題主要考查了平面向量的基本定理,以及向量的三角形法則,平面上任意不共線的一組向量可以作為一組基底.15、【解析】
由,結(jié)合等比數(shù)列的定義可知數(shù)列是以為首項,為公比的等比數(shù)列,代入等比數(shù)列的求和公式即可求解.【詳解】因為,所以,又因為所以數(shù)列是以為首項,為公比的等比數(shù)列,所以由等比數(shù)列的求和公式得,解得【點睛】本題考查利用等比數(shù)列的定義求通項公式以及等比數(shù)列的求和公式,屬于簡單題.16、①②【解析】
根據(jù)均值不等式依次判斷每個選項的正誤,得到答案.【詳解】①若,則的最大值為,正確②當(dāng)時,,時等號成立,正確③的最小值為,取錯誤④當(dāng)且僅當(dāng)均為正數(shù)時,恒成立均為負(fù)數(shù)時也成立.故答案為①②【點睛】本題考查了均值不等式,掌握一正二定三相等的具體含義是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)邊AC的中點M在y軸上,由中點公式得,A,C兩點的橫坐標(biāo)和的平均數(shù)為1,同理,B,C兩點的縱坐標(biāo)和的平均數(shù)為1.構(gòu)造方程易得C點的坐標(biāo).(2)根據(jù)C點的坐標(biāo),結(jié)合中點公式,我們可求出M,N兩點的坐標(biāo),代入兩點式即可求出直線MN的方程.解:(1)設(shè)點C(x,y),∵邊AC的中點M在y軸上得=1,∵邊BC的中點N在x軸上得=1,解得x=﹣5,y=﹣2.故所求點C的坐標(biāo)是(﹣5,﹣2).(2)點M的坐標(biāo)是(1,﹣),點N的坐標(biāo)是(1,1),直線MN的方程是=,即5x﹣2y﹣5=1.點評:在求直線方程時,應(yīng)先選擇適當(dāng)?shù)闹本€方程的形式,并注意各種形式的適用條件,用斜截式及點斜式時,直線的斜率必須存在,而兩點式不能表示與坐標(biāo)軸垂直的直線,截距式不能表示與坐標(biāo)軸垂直或經(jīng)過原點的直線,故在解題時,若采用截距式,應(yīng)注意分類討論,判斷截距是否為零;若采用點斜式,應(yīng)先考慮斜率不存在的情況.18、(1);(2)當(dāng)月產(chǎn)量為8百臺時,公司所獲利潤最大,最大利潤為萬元.【解析】
(1)由題可得成本函數(shù)G(x)=4+,通過f(x)=R(x)-G(x)得到解析式;(2)當(dāng)x>10時,當(dāng)0≤x≤10時,分別求解函數(shù)的最大值即可.【詳解】(1)由條件知成本函數(shù)G(x)=4+可得(2)當(dāng)時,,當(dāng)時,的最大值為萬元;當(dāng)時,萬元,綜上所述,當(dāng)月產(chǎn)量為8百臺時,公司所獲利潤最大,最大利潤為萬元.【點睛】本題考查實際問題的應(yīng)用,分段函數(shù)的應(yīng)用,函數(shù)的最大值的求法,考查轉(zhuǎn)化思想以及計算能力.19、(1)3;(2)或【解析】
(1)由,得,又由,即可得到本題答案;(2)由,得,即,由此即可得到本題答案.【詳解】解:(1)由,得,即,(2)由,得,即,又,解得或.【點睛】本題主要考查平面向量與三角函數(shù)求值的綜合問題,齊次式法求值是解決此類問題的常用方法.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)解方程組即得,即得數(shù)列的通項公式;(Ⅱ)利用裂項相消法求數(shù)列的前項和.【詳解】(Ⅰ)由題意:,化簡得,因為數(shù)列的公差不為零,,故數(shù)列的通項公式為.(Ⅱ)由(Ⅰ)知,故數(shù)列的前項和.【點睛】本題主要考查等差數(shù)列通項的求法,考查裂項相消法求和,意在考查學(xué)生對這些知識
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 互補(bǔ)發(fā)電系統(tǒng)行業(yè)深度研究報告
- 2025公司質(zhì)押借款合同范本
- 2024年度天津市公共營養(yǎng)師之二級營養(yǎng)師綜合檢測試卷A卷含答案
- 2025農(nóng)資買賣合同范本下載
- 2025解除勞動合同告知書
- 2024年度四川省公共營養(yǎng)師之二級營養(yǎng)師真題練習(xí)試卷A卷附答案
- 易拉罐灌裝生產(chǎn)線行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2024-2025年中國山東省科技金融行業(yè)競爭格局分析及投資規(guī)劃研究報告
- 山東計劃生育技術(shù)服務(wù)活動市場前景及投資研究報告
- 以工代賑項目可行性研究報告
- 制造業(yè)成本精細(xì)化管理
- 工業(yè)互聯(lián)網(wǎng)標(biāo)準(zhǔn)體系(版本3.0)
- 初中生物老師經(jīng)驗交流課件
- 柴油發(fā)電機(jī)組采購施工 投標(biāo)方案(技術(shù)方案)
- 股權(quán)招募計劃書
- 創(chuàng)業(yè)之星學(xué)創(chuàng)杯經(jīng)營決策常見問題匯總
- 安徽省合肥市蜀山區(qū)2023-2024學(xué)年五年級上學(xué)期期末質(zhì)量檢測科學(xué)試題
- 公豬站工作總結(jié)匯報
- 醫(yī)學(xué)專業(yè)醫(yī)學(xué)統(tǒng)計學(xué)試題(答案見標(biāo)注) (三)
- 新教材蘇教版三年級上冊科學(xué)全冊單元測試卷
- 膠囊內(nèi)鏡定位導(dǎo)航技術(shù)研究
評論
0/150
提交評論