版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省玉溪市通海一中2025屆數(shù)學(xué)高一下期末復(fù)習(xí)檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知A(-3,8),B(2,2),在x軸上有一點(diǎn)M,使得|MA|+|MB|最短,則點(diǎn)M的坐標(biāo)是()A.(-1,0) B.(1,0) C. D.2.將函數(shù)的圖像上的所有點(diǎn)向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像,若的部分圖像如圖所示,則函數(shù)的解析式為A. B.C. D.3.已知為等比數(shù)列,是它的前項(xiàng)和.若,且與的等差中項(xiàng)為,則()A.31 B.32 C. D.4.化成弧度制為()A. B. C. D.5.已知圓與直線切于點(diǎn),則直線的方程為()A. B. C. D.6.某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是()A. B. C. D.7.已知,,,則它們的大小關(guān)系是()A. B. C. D.8.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A.3 B.4 C.5 D.69.設(shè),,若是與的等比中項(xiàng),則的最小值為()A. B. C.3 D.10.已知函數(shù),此函數(shù)的圖象如圖所示,則點(diǎn)的坐標(biāo)是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,矩形中,,,是的中點(diǎn),將沿折起,使折起后平面平面,則異面直線和所成的角的余弦值為__________.12.在中,若,則____;13.設(shè)滿足不等式組,則的最小值為_____.14.若為冪函數(shù),則滿足的的值為________.15.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為________.16.已知角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與軸正半軸重合,終邊經(jīng)過(guò)點(diǎn),則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,在中,角,,的對(duì)邊分別為,,,且.(1)求的大?。唬?)若,為外一點(diǎn),,,求四邊形面積的最大值.18.已知數(shù)列中,,點(diǎn)在直線上,其中.(1)令,求證數(shù)列是等比數(shù)列;(2)求數(shù)列的通項(xiàng);(3)設(shè)、分別為數(shù)列、的前項(xiàng)和是否存在實(shí)數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出,若不存在,則說(shuō)明理由.19.如圖,有一直徑為8米的半圓形空地,現(xiàn)計(jì)劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟(jì)價(jià)值是種植乙水果經(jīng)濟(jì)價(jià)值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足甲水果生長(zhǎng)的需要,該光源照射范圍是,點(diǎn)在直徑上,且.(1)若,求的長(zhǎng);(2)設(shè),求該空地產(chǎn)生最大經(jīng)濟(jì)價(jià)值時(shí)種植甲種水果的面積.20.如圖,在平面四邊形中,已知,,,為線段上一點(diǎn).(1)求的值;(2)試確定點(diǎn)的位置,使得最小.21.已知向量,,.(1)求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;(2)記的內(nèi)角的對(duì)邊分別為.若,,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
由集合性質(zhì)可知,求出點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn),此對(duì)稱點(diǎn)與點(diǎn)B確定的直線與x軸的交點(diǎn),即為點(diǎn)M.【詳解】點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)C的坐標(biāo)為:,由兩點(diǎn)可得直線BC方程為:,可求得與y軸的交點(diǎn)為.故選B.【點(diǎn)睛】本題考查最短路徑問(wèn)題,輔助作圖更易理解,注意求直線方程時(shí)要熟練使用最簡(jiǎn)便的方式,注意計(jì)算的準(zhǔn)確性.2、C【解析】
根據(jù)圖象求出A,ω和φ的值,得到g(x)的解析式,然后將g(x)圖象上的所有點(diǎn)向左平移個(gè)單位長(zhǎng)度得到f(x)的圖象.【詳解】由圖象知A=1,(),即函數(shù)的周期T=π,則π,得ω=2,即g(x)=sin(2x+φ),由五點(diǎn)對(duì)應(yīng)法得2φ=2kπ+π,k,得φ,則g(x)=sin(2x),將g(x)圖象上的所有點(diǎn)向左平移個(gè)單位長(zhǎng)度得到f(x)的圖象,即f(x)=sin[2(x)]=sin(2x)=,故選C.【點(diǎn)睛】本題主要考查三角函數(shù)解析式的求解,結(jié)合圖象求出A,ω和φ的值以及利用三角函數(shù)的圖象變換關(guān)系是解決本題的關(guān)鍵.3、A【解析】
根據(jù)與的等差中項(xiàng)為,可得到一個(gè)等式,和,組成一個(gè)方程組,結(jié)合等比數(shù)列的性質(zhì),這個(gè)方程組轉(zhuǎn)化為關(guān)于和公比的方程組,解這個(gè)方程組,求出和公比的值,再利用等比數(shù)列前項(xiàng)和公式,求出的值.【詳解】因?yàn)榕c的等差中項(xiàng)為,所以,因此有,故本題選A.【點(diǎn)睛】本題考查了等差中項(xiàng)的性質(zhì),等比數(shù)列的通項(xiàng)公式以及前項(xiàng)和公式,4、A【解析】
利用角度化弧度公式可將化為對(duì)應(yīng)的弧度數(shù).【詳解】由題意可得,故選A.【點(diǎn)睛】本題考查角度化弧度,充分利用公式進(jìn)行計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.5、A【解析】
利用點(diǎn)與圓心連線的直線與所求直線垂直,求出斜率,即可求過(guò)點(diǎn)與圓C相切的直線方程;【詳解】圓可化為:,顯然過(guò)點(diǎn)的直線不與圓相切,則點(diǎn)與圓心連線的直線斜率為,則所求直線斜率為,代入點(diǎn)斜式可得,整理得。故選A.【點(diǎn)睛】本題考查直線方程,考查直線與圓的位置關(guān)系,考查分類討論的數(shù)學(xué)思想,屬于中檔題.6、D【解析】
由題意首先確定流程圖的功能,然后結(jié)合三角函數(shù)的性質(zhì)求解所要輸出的結(jié)果即開即可.【詳解】根據(jù)程序框圖知,該算法的目標(biāo)是計(jì)算和式:.又因?yàn)?,注意到,故?故選:D.【點(diǎn)睛】識(shí)別、運(yùn)行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu).(2)要識(shí)別、運(yùn)行程序框圖,理解框圖所解決的實(shí)際問(wèn)題.(3)按照題目的要求完成解答并驗(yàn)證.7、C【解析】因?yàn)椋?,故選C.8、C【解析】
由又,可得公差,從而可得結(jié)果.【詳解】是等差數(shù)列又,∴公差,,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式與求和公式的應(yīng)用,意在考查靈活應(yīng)用所學(xué)知識(shí)解答問(wèn)題的能力,屬于中檔題.9、C【解析】
先由題意求出,再結(jié)合基本不等式,即可求出結(jié)果.【詳解】因?yàn)槭桥c的等比中項(xiàng),所以,故,因?yàn)?,,所以,?dāng)且僅當(dāng),即時(shí),取等號(hào);故選C【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用,熟記基本不等式即可,屬于??碱}型.10、B【解析】
根據(jù)確定的兩個(gè)相鄰零點(diǎn)的值可以求出最小正周期,進(jìn)而利用正弦型最小正周期公式求出的值,最后把其中的一個(gè)零點(diǎn)代入函數(shù)的解析式中,求出的值即可.【詳解】設(shè)函數(shù)的最小正周期為,因此有,當(dāng)時(shí),,因此的坐標(biāo)為:.故選:B【點(diǎn)睛】本題考查了通過(guò)三角函數(shù)的圖象求參數(shù)問(wèn)題,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
取中點(diǎn)為,中點(diǎn)為,連接,則異面直線和所成角為.在中,利用邊長(zhǎng)關(guān)系得到余弦值.【詳解】由題意,取中點(diǎn),連接,則,可得直線和所成角的平面角為,(如圖)過(guò)作垂直于,平面⊥平面,,平面,,且,結(jié)合平面圖形可得:,,,又=,∴=,∴在中,=,∴△DFC是直角三角形且,可得.【點(diǎn)睛】本題考查了異面直線的夾角,意在考查學(xué)生的計(jì)算能力和空間想象能力.12、【解析】試題分析:因?yàn)椋裕烧叶ɡ?,知,所以==.考點(diǎn):1、同角三角函數(shù)間的基本關(guān)系;2、正弦定理.13、-6【解析】作出可行域,如圖內(nèi)部(含邊界),作直線,當(dāng)向下平移時(shí),減小,因此當(dāng)過(guò)點(diǎn)時(shí),為最小值.14、【解析】
根據(jù)冪函數(shù)定義知,又,由二倍角公式即可求解.【詳解】因?yàn)闉閮绾瘮?shù),所以,即,因?yàn)?所以,即,因?yàn)椋裕?故填.【點(diǎn)睛】本題主要考查了冪函數(shù)的定義,正弦的二倍角公式,屬于中檔題.15、【解析】
求出的垂直平分線方程,兩垂直平分線交點(diǎn)為外接圓圓心.再由兩點(diǎn)間距離公式計(jì)算.【詳解】由點(diǎn)B(0,),C(2,),得線段BC的垂直平分線方程為x=1,①由點(diǎn)A(1,0),B(0,),得線段AB的垂直平分線方程為②聯(lián)立①②,解得△ABC外接圓的圓心坐標(biāo)為,其到原點(diǎn)的距離為.故答案為:【點(diǎn)睛】本題考查三角形外接圓圓心坐標(biāo),外心是三角形三條邊的中垂線的交點(diǎn),到三頂點(diǎn)距離相等.16、【解析】
利用三角函數(shù)的定義可求出的值.【詳解】由三角函數(shù)的定義可得,故答案為.【點(diǎn)睛】本題考查利用三角函數(shù)的定義求余弦值,解題的關(guān)鍵就是三角函數(shù)定義的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)由余弦定理和誘導(dǎo)公式整理,得到,求出;(2)在中,用余弦定理表示出,判斷是等腰直角三角形,再利用三角形面積公式表示出,再利用輔助角公式化簡(jiǎn),求出四邊形面積的最大值.【詳解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即為.(2)在中,,,由余弦定理可得,又∵,∴為等腰直角三角形,∴,∴當(dāng)時(shí),四邊形面積有最大值,最大值為.【點(diǎn)睛】本題主要考查余弦定理解三角形、誘導(dǎo)公式、三角形面積公式和利用三角函數(shù)求最值,考查學(xué)生的分析轉(zhuǎn)化能力和計(jì)算能力,屬于中檔題.18、(1)證明過(guò)程見詳解;(2);(3)存在實(shí)數(shù),使得數(shù)列為等差數(shù)列.【解析】
(1)先由題意得到,再由,得到,即可證明結(jié)論成立;(2)先由(1)求得,推出,利用累加法,即可求出數(shù)列的通項(xiàng);(3)把數(shù)列an}、{bn}通項(xiàng)公式代入an+2bn,進(jìn)而得到Sn+2T的表達(dá)式代入Tn,進(jìn)而推斷當(dāng)且僅當(dāng)λ=2時(shí),數(shù)列是等差數(shù)列.【詳解】(1)因?yàn)辄c(diǎn)在直線上,所以,因此由得所以數(shù)列是以為公比的等比數(shù)列;(2)因?yàn)?,由得,故,由?)得,所以,即,所以,,…,,以上各式相加得:所以;(3)存在λ=2,使數(shù)列是等差數(shù)列.由(Ⅰ)、(Ⅱ)知,an+2bn=n﹣2∴又=∴,∴當(dāng)且僅當(dāng)λ=2時(shí),數(shù)列是等差數(shù)列.【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合,熟記等比數(shù)列的定義,等比數(shù)列的通項(xiàng)公式,以及等差數(shù)列與等比數(shù)列的求和公式即可,屬于??碱}型.19、(1)1或3(2)【解析】
試題分析:(1)在中,因?yàn)?,,,所以由余弦定理,且,,所以,解得或?)該空地產(chǎn)生最大經(jīng)濟(jì)價(jià)值等價(jià)于種植甲種水果的面積最大,所以用表示出,再利用三角函數(shù)求最值得試題解析:(1)連結(jié),已知點(diǎn)在以為直徑的半圓周上,所以為直角三角形,因?yàn)?,,所以,,在中由余弦定理,且,所以,解得或,?)因?yàn)?,,所以,所以,在中由正弦定理得:所以,在中,由正弦定理得:所以,若產(chǎn)生最大經(jīng)濟(jì)效益,則的面積最大,,因?yàn)?,所以所以?dāng)時(shí),取最大值為,此時(shí)該地塊產(chǎn)生的經(jīng)濟(jì)價(jià)值最大考點(diǎn):①解三角形及正弦定理的應(yīng)用②三角函數(shù)求最值20、(1);(2)見解析【解析】
(1)通過(guò),,可得,從而通過(guò)可以求出,再確定的值.(2)法一:設(shè)(),可以利用基底法將表示為t的函數(shù),然后求得最小值;法二:建立平面直角坐標(biāo)系,設(shè)(),然后表示出相關(guān)點(diǎn)的坐標(biāo),從而求得最小值.【詳解】(1),,,,,即,,(2)法一:設(shè)(),則,,當(dāng)時(shí),即時(shí),最小法二:建立如圖平面直角坐標(biāo)系,則,,,,設(shè)(),則,當(dāng)時(shí),即時(shí),最?。军c(diǎn)睛】本題主要考查向量的數(shù)量積運(yùn)算,數(shù)形結(jié)合思想及函數(shù)思想,意在考查學(xué)生的劃歸能力和分析能力,難度較大.21、(1)最小正周期為,單調(diào)遞減區(qū)間為;(2)或【解析】
(1)由向量的數(shù)量積的運(yùn)算公式和三角恒等變換的公式化簡(jiǎn)可得,再結(jié)合三角函數(shù)的性質(zhì),即可求解.(2)由(1),根據(jù),解得,利用正弦定理,求得,再利用余弦定理列出方程,即可求解.【詳解】(1)由題意,向量,,所以,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 策劃公司前臺(tái)工作總結(jié)
- 運(yùn)輸物流行業(yè)顧問(wèn)工作總結(jié)
- 2024新年寄語(yǔ)匯編(32篇)
- 制冷技術(shù)轉(zhuǎn)讓協(xié)議書(2篇)
- 創(chuàng)業(yè)合作投資協(xié)議書(2篇)
- 2024年計(jì)算機(jī)專業(yè)實(shí)習(xí)心得體會(huì)
- 易錯(cuò)點(diǎn)08 中國(guó)近代史時(shí)間問(wèn)題-備戰(zhàn)2023年中考?xì)v史考試易錯(cuò)題(解析版)
- 地理中國(guó)的世界遺產(chǎn)課件中圖版選修
- 2025屆陜西省咸陽(yáng)市武功縣中考生物全真模擬試題含解析
- 《公共政策過(guò)程》課件
- 2025年中國(guó)煙草總公司湖北省公司校園招聘227人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024版帶貨主播電商平臺(tái)合作服務(wù)合同范本3篇
- 2025公司資產(chǎn)劃轉(zhuǎn)合同
- 2024-2030年中國(guó)鋁汽車緊固件行業(yè)銷售規(guī)模與盈利前景預(yù)測(cè)報(bào)告
- 廣東省清遠(yuǎn)市2023-2024學(xué)年高一上學(xué)期期末質(zhì)量檢測(cè)物理試題(解析版)
- 2024-2025學(xué)年人教版數(shù)學(xué)五年級(jí)上冊(cè)期末檢測(cè)試卷(含答案)
- 《外盤期貨常識(shí)》課件
- 【MOOC】土力學(xué)-西安交通大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 醫(yī)院醫(yī)保科工作總結(jié)
- 2024-2025學(xué)年譯林版八年級(jí)英語(yǔ)上學(xué)期重點(diǎn)詞匯短語(yǔ)句子歸納【考點(diǎn)清單】
- 2024年企業(yè)采購(gòu)部年終總結(jié)及今后計(jì)劃(3篇)
評(píng)論
0/150
提交評(píng)論