版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
北京市東城區(qū)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某象棋俱樂部有隊員5人,其中女隊員2人,現(xiàn)隨機選派2人參加一個象棋比賽,則選出的2人中恰有1人是女隊員的概率為()A. B. C. D.2.函數(shù)的圖像與函數(shù),的圖像的交點個數(shù)為()A. B. C. D.3.在區(qū)間上隨機選取一個實數(shù),則事件“”發(fā)生的概率是()A. B. C. D.4.一個盒子內(nèi)裝有大小相同的紅球、白球和黑球若干個,從中摸出1個球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或紅球的概率是()A.0.3 B.0.55 C.0.7 D.0.755.設(shè)是周期為4的奇函數(shù),當(dāng)時,,則()A. B. C. D.6.過點且垂直于直線的直線方程為()A. B.C. D.7.已知方程表示焦點在y軸上的橢圓,則m的取值范圍是()A. B. C. D.8.已知數(shù)列的前項和為,直線與圓:交于兩點,且.記,其前項和為,若存在,使得有解,則實數(shù)取值范圍是()A. B. C. D.9.若點為圓C:的弦MN的中點,則弦MN所在直線的方程為()A. B. C. D.10.設(shè)為正數(shù),為的等差中項,為的等比中項,則與的大小關(guān)為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,若,則實數(shù)_______.12.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0的公共弦的長為___.13.在三棱錐P-ABC中,平面PAB⊥平面ABC,ΔABC是邊長為23的等邊三角形,其中PA=PB=14.一組數(shù)據(jù)2,4,5,,7,9的眾數(shù)是7,則這組數(shù)據(jù)的中位數(shù)是__________.15.設(shè),用,表示所有形如的正整數(shù)集合,其中且,為集合中的所有元素之和,則的通項公式為_______16.把“五進制”數(shù)轉(zhuǎn)化為“十進制”數(shù)是_____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為,且,.(1)求證:數(shù)列的通項公式;(2)設(shè),,求.18.如圖,四邊形ABCD是平行四邊形,點E,F(xiàn),G分別為線段BC,PB,AD的中點.(1)證明:EF∥平面PAC;(2)證明:平面PCG∥平面AEF;(3)在線段BD上找一點H,使得FH∥平面PCG,并說明理由.19.三個內(nèi)角A,B,C對應(yīng)的三條邊長分別是,且滿足.(1)求角的大??;(2)若,,求.20.已知為第三象限角,.(1)化簡(2)若,求的值21.已知某校甲、乙、丙三個年級的學(xué)生志愿者人數(shù)分別是240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學(xué)去某敬老院參加獻愛心活動。(1)應(yīng)從甲、乙、丙三個年級的學(xué)生志愿者中分別抽取多少人?(2)設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F(xiàn),G表示,現(xiàn)從中隨機抽取2名同學(xué)承擔(dān)敬老院的衛(wèi)生工作,求事件M“抽取的2名同學(xué)來自同一年級”發(fā)生的概率。
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
直接利用概率公式計算得到答案.【詳解】故選:【點睛】本題考查了概率的計算,屬于簡單題.2、A【解析】
在同一坐標(biāo)系中畫出兩函數(shù)的圖象,根據(jù)圖象得到交點個數(shù).【詳解】可得兩函數(shù)圖象如下圖所示:兩函數(shù)共有個交點本題正確選項:【點睛】本題考查函數(shù)交點個數(shù)的求解,關(guān)鍵是能夠根據(jù)兩函數(shù)的解析式,通過平移和翻折變換等知識得到函數(shù)的圖象,采用數(shù)形結(jié)合的方式得到結(jié)果.3、B【解析】
根據(jù)求出的范圍,再由區(qū)間長度比即可得出結(jié)果.【詳解】區(qū)間的長度為;由,解得,即,區(qū)間長度為,事件“”發(fā)生的概率是.故選B.【點睛】本題主要考查與長度有關(guān)的幾何概型,熟記概率計算公式即可,屬于基礎(chǔ)題型.4、D【解析】
由題意可知摸出黑球的概率,再根據(jù)摸出黑球,摸出紅球為互斥事件,根據(jù)互斥事件的和即可求解.【詳解】因為從中摸出1個球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因為從盒子中摸出1個球為黑球或紅球為互斥事件,所以摸出黑球或紅球的概率,故選D.【點睛】本題主要考查了兩個互斥事件的和事件,其概率公式,屬于中檔題.5、A【解析】
.故選A.6、C【解析】
先求出直線的斜率,再求出所求直線的斜率,再利用直線的點斜式方程求解.【詳解】由題得直線的斜率為,所以所求的直線的斜率為,所以所求的直線方程為即.故選:C【點睛】本題主要考查互相垂直直線的性質(zhì),考查直線方程的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.7、B【解析】
利用橢圓的性質(zhì)列出不等式求解即可.【詳解】方程1表示焦點在y軸上的橢圓,可得,解得1<m.則m的取值范圍為:(1,).故選B.【點睛】本題考查橢圓的方程及簡單性質(zhì)的應(yīng)用,基本知識的考查.8、D【解析】
根據(jù)題意,先求出弦長,再表示出,得到,求出數(shù)列的通項公式,再表示出,用錯位相減求和求出,再求解即可.【詳解】根據(jù)題意,圓的半徑,圓心到直線的距離,所以弦長,所以,當(dāng)時,,所以,時,,所以,得,所以數(shù)列是以為首項,為公比的等比數(shù)列,所以,,,所以,,,所以,由有解,,只需大于的最小值即可,因為,所以,所以.故選:D【點睛】本題主要考查求圓的弦長、由和求數(shù)列通項、錯位相減求數(shù)列的和和解不等式有解的情況,考查學(xué)生的分析轉(zhuǎn)化能力和計算能力,屬于難題.9、A【解析】
根據(jù)題意,先求出直線PC的斜率,根據(jù)MN與PC垂直求出MN的斜率,由點斜式,即可求出結(jié)果.【詳解】由題意知,圓心的坐標(biāo)為,則,由于MN與PC垂直,故MN的斜率,故弦MN所在的直線方程為,即.故選A【點睛】本題主要考查求弦所在直線方程,熟記直線的點斜式方程即可,屬于常考題型.10、B【解析】
由等差中項及等比中項的運算可得,,再結(jié)合即可得解.【詳解】解:因為為正數(shù),為的等差中項,為的等比中項,則,,又,當(dāng)且僅當(dāng)時取等號,又,所以,故選:B.【點睛】本題考查了等差中項及等比中項的運算,重點考查了重要不等式的應(yīng)用,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用平面向量垂直的數(shù)量積關(guān)系可得,再利用數(shù)量積的坐標(biāo)運算可得:,解方程即可.【詳解】因為,所以,整理得:,解得:【點睛】本題主要考查了平面向量垂直的坐標(biāo)關(guān)系及方程思想,屬于基礎(chǔ)題.12、【解析】
兩圓方程相減求出公共弦所在直線的解析式,求出第一個圓心到直線的距離,再由第一個圓的半徑,利用勾股定理及垂徑定理即可求出公共弦長.【詳解】圓與圓的方程相減得:,由圓的圓心,半徑r為2,且圓心到直線的距離,則公共弦長為.故答案為.【點睛】此題考查了直線與圓相交的性質(zhì),求出公共弦所在的直線方程是解本題的關(guān)鍵.13、65π【解析】
本題首先可以通過題意畫出圖像,然后通過三棱錐的圖像性質(zhì)以及三棱錐的外接球的相關(guān)性質(zhì)來確定圓心的位置,最后根據(jù)各邊所滿足的幾何關(guān)系列出算式,即可得出結(jié)果。【詳解】如圖所示,作AB中點D,連接PD、CD,在CD上作三角形ABC的中心E,過點E作平面ABC的垂線,在垂線上取一點O,使得PO=OC。因為三棱錐底面是一個邊長為23的等邊三角形,E所以三棱錐的外接球的球心在過點E的平面ABC的垂線上,因為PO=OC,P、C兩點在三棱錐的外接球的球面上,所以O(shè)點即為球心,因為平面PAB⊥平面ABC,PA=PB,D為AB中點,所以PD⊥平面ABCCD=CA2-ADPD=P設(shè)球的半徑為r,則有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面積為S=4πr【點睛】本題考查三棱錐的相關(guān)性質(zhì),主要考查三棱錐的外接球的相關(guān)性質(zhì),考查如何通過三棱錐的幾何特征來確定三棱錐的外接球與半徑,考查推理能力,考查化歸與轉(zhuǎn)化思想,是難題。14、6【解析】
由題得x=7,再利用中位數(shù)的公式求這組數(shù)據(jù)的中位數(shù).【詳解】因為數(shù)據(jù)2,4,5,,7,9的眾數(shù)是7,所以,則這組數(shù)據(jù)的中位數(shù)是.故答案為6【點睛】本題主要考查眾數(shù)的概念和中位數(shù)的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.15、【解析】
把集合中每個數(shù)都表示為2的0到的指數(shù)冪相加的形式,并確定,,,,每個數(shù)都出現(xiàn)次,于是利用等比數(shù)列求和公式計算,可求出數(shù)列的通項公式.【詳解】由題意可知,,,,是0,1,2,,的一個排列,且集合中共有個數(shù),若把集合中每個數(shù)表示為的形式,則,,,,每個數(shù)都出現(xiàn)次,因此,,故答案為:.【點睛】本題以數(shù)列新定義為問題背景,考查等比數(shù)列的求和公式,考查學(xué)生的理解能力與計算能力,屬于中等題.16、194【解析】由.故答案為:194.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用即可求出答案;(2)利用裂項相消法即可求出答案.【詳解】解:(1)∵,當(dāng)時,,當(dāng)時,,∴,;(2)∵,∴.【點睛】本題主要考查數(shù)列已知求,考查裂項相消法求和,屬于中檔題.18、(1)見解析(2)見解析(3)見解析【解析】
(1)證明,EF∥平面PAC即得證;(2)證明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得證;(3)設(shè)AE,GC與BD分別交于M,N兩點,證明N點為所找的H點.【詳解】(1)證明:∵E、F分別是BC,BP中點,∴,∵PC?平面PAC,EF?平面PAC,∴EF∥平面PAC.(2)證明:∵E、G分別是BC、AD中點,∴AE∥CG,∵AE?平面PCG,CG?平面PCG,∴AE∥平面PCG,又∵EF∥PC,PC?平面PCG,EF?平面PCG,∴EF∥平面PCG,AE∩EF=E點,AE,EF?平面AEF,∴平面AEF∥平面PCG.(3)設(shè)AE,GC與BD分別交于M,N兩點,易知F,N分別是BP,BM中點,∴,∵PM?平面PGC,F(xiàn)N?平面PGC,∴FN∥平面PGC,即N點為所找的H點.【點睛】本題主要考查空間平行位置關(guān)系的證明,考查立體幾何的探究性問題的解決,意在考查學(xué)生對這些知識的理解掌握水平.19、⑴(2)【解析】
⑴由正弦定理及,得,因為,所以;⑵由余弦定理,解得【詳解】⑴由正弦定理得,由已知得,,因為,所以⑵由余弦定理,得即,解得或,負(fù)值舍去,所以【點睛】解三角形問題,常要求正確選擇正弦定理或余弦定理對三角形中的邊、角進行轉(zhuǎn)換,再進行求解,同時注意三角形當(dāng)中的邊角關(guān)系,如內(nèi)角和為180度等20、(1)見解析;(2).【解析】利用指數(shù)運算、指對互化、對數(shù)運算求解試題分析:(1)(2)由,得.又已知為第三象限角,所以,所以,所以=………………10分考點:本題主要考查了誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系以及三角函數(shù)符號的判定.點評:解決此類問題的關(guān)鍵是掌握誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系以及三角函數(shù)符好的判定方法.誘導(dǎo)公式的記憶應(yīng)結(jié)合圖形記憶較好,難度一般.21、(1)應(yīng)分別從甲、乙、丙三個年級分別抽取3人,2人,2人(2)P【解析】
(1)由分層抽樣的性質(zhì)可得甲、乙、丙三個年級的學(xué)生志愿者人數(shù)之比為3:2:2,可得抽取7名同學(xué),應(yīng)分別從甲、乙、丙三個年級分別抽取3人,2人,2人;(2)從抽出的7名同學(xué)中隨機抽取2名的所有可能結(jié)果為21種,其中2名同學(xué)來自同一年級的所有可能結(jié)果為5種,可得答案.【詳解】解:(1)由已知,甲、乙、丙三個年級的學(xué)生志愿者人數(shù)之比為3:2:2因為采取分層抽樣的方法抽取7名同學(xué),所以應(yīng)分別從甲、乙、丙三個年級分別抽取3人,2人,2人(2)從抽出的7名同學(xué)中隨機抽取2名的所有可能結(jié)果為:ABACADAEAFAG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年西師新版九年級地理下冊階段測試試卷含答案
- 2025年滬教版九年級歷史上冊月考試卷含答案
- 2025年滬教新版選擇性必修3化學(xué)下冊階段測試試卷
- 2025年滬科版選修一歷史下冊階段測試試卷
- 2025年華師大版九年級化學(xué)上冊階段測試試卷含答案
- 2025年滬教版九年級歷史下冊階段測試試卷
- 2025年外研銜接版九年級地理下冊月考試卷含答案
- 2025年農(nóng)藥企業(yè)環(huán)保責(zé)任履行合同4篇
- 二零二五版抵押車借款合同編制指南與實例3篇
- 二零二五年度跨境電商進口貨物擔(dān)保借款合同范本4篇
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 2024中考復(fù)習(xí)必背初中英語單詞詞匯表(蘇教譯林版)
- 海員的營養(yǎng)-1315醫(yī)學(xué)營養(yǎng)霍建穎等講解
- 《現(xiàn)代根管治療術(shù)》課件
- 肩袖損傷的護理查房課件
- 2023屆北京市順義區(qū)高三二模數(shù)學(xué)試卷
- 公司差旅費報銷單
- 我國全科醫(yī)生培訓(xùn)模式
- 2021年上海市楊浦區(qū)初三一模語文試卷及參考答案(精校word打印版)
- 八年級上冊英語完形填空、閱讀理解100題含參考答案
- 八年級物理下冊功率課件
評論
0/150
提交評論