版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北京市平谷區(qū)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在ΔABC中,若,則=()A.6 B.4 C.-6 D.-42.設(shè)l是直線,,是兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.關(guān)于x的不等式的解集是,則關(guān)于x的不等式的解集是()A. B.C. D.4.已知向量a=(1,-1),bA.-1 B.0 C.1 D.25.如圖所示,已知兩座燈塔A和B與海洋觀察站C的距離都等于akm,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與燈塔B的距離為()A.a(chǎn)km B.a(chǎn)kmC.a(chǎn)km D.2akm6.設(shè)α,β為兩個不同的平面,直線l?α,則“l(fā)⊥β”是“α⊥β”成立的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件7.已知函數(shù)的部分圖象如圖所示,則函數(shù)的表達(dá)式是()A. B.C. D.8.已知正實數(shù)滿足,則的最大值為()A.2 B. C.3 D.9.不等式的解集是A. B.C.或 D.10.如圖,正方形中,是的中點,若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則____________.12.在梯形中,,,設(shè),,則__________(用向量表示).13.關(guān)于的不等式的解集是,則______.14.設(shè)函數(shù)的最小值為,則的取值范圍是___________.15.某校老年、中年和青年教師的人數(shù)分別為90,180,160,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有32人,則抽取的樣本中老年教師的人數(shù)為_____16.設(shè)向量,,且,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.給定常數(shù),定義函數(shù),數(shù)列滿足.(1)若,求及;(2)求證:對任意,;(3)是否存在,使得成等差數(shù)列?若存在,求出所有這樣的,若不存在,說明理由.18.已知點,,曲線任意一點滿足.(1)求曲線的方程;(2)設(shè)點,問是否存在過定點的直線與曲線相交于不同兩點,無論直線如何運動,軸都平分,若存在,求出點坐標(biāo),若不存在,請說明理由.19.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求三棱柱的高.20.已知,,,求.21.已知函數(shù)的最小正周期為,且該函數(shù)圖象上的最低點的縱坐標(biāo)為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間及對稱軸方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
向量的點乘,【詳解】,選C.【點睛】向量的點乘,需要注意后面乘的是兩向量的夾角的余弦值,本題如果直接計算的話,的夾角為∠BAC的補(bǔ)角2、D【解析】
利用空間線線、線面、面面的位置關(guān)系對選項進(jìn)行逐一判斷,即可得到答案.【詳解】A.若,,則與可能平行,也可能相交,所以不正確.B.若,,則與可能的位置關(guān)系有相交、平行或,所以不正確.C.若,,則可能,所以不正確.D.若,,由線面平行的性質(zhì)過的平面與相交于,則,又.
所以,所以有,所以正確.故選:D【點睛】本題考查面面平行、垂直的判斷,線面平行和垂直的判斷,屬于基礎(chǔ)題.3、D【解析】
由不等式與方程的關(guān)系可得且,則等價于,再結(jié)合二次不等式的解法求解即可.【詳解】解:由關(guān)于x的不等式的解集是,由不等式與方程的關(guān)系可得且,則等價于等價于,解得,即關(guān)于x的不等式的解集是,故選:D.【點睛】本題考查了不等式與方程的關(guān)系,重點考查了二次不等式的解法,屬基礎(chǔ)題.4、C【解析】
由向量的坐標(biāo)運算表示2a【詳解】解:因為a=(1,-1),b=(-1,2故選C.【點睛】本題考查了向量的加法和數(shù)量積的坐標(biāo)運算;屬于基礎(chǔ)題目.5、B【解析】
先根據(jù)題意確定的值,再由余弦定理可直接求得的值.【詳解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故選:B.【點睛】本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.6、A【解析】試題分析:當(dāng)滿足l?α,l⊥β時可得到α⊥β成立,反之,當(dāng)l?α,α⊥β時,l與β可能相交,可能平行,因此前者是后者的充分不必要條件考點:充分條件與必要條件點評:命題:若p則q是真命題,則p是q的充分條件,q是p的必要條件7、D【解析】
根據(jù)函數(shù)的最值求得,根據(jù)函數(shù)的周期求得,根據(jù)函數(shù)圖像上一點的坐標(biāo)求得,由此求得函數(shù)的解析式.【詳解】由題圖可知,且即,所以,將點的坐標(biāo)代入函數(shù),得,即,因為,所以,所以函數(shù)的表達(dá)式為.故選D.【點睛】本小題主要考查根據(jù)三角函數(shù)圖像求三角函數(shù)的解析式,屬于基礎(chǔ)題.8、B【解析】
由,然后由基本不等式可得最大值.【詳解】,當(dāng)且僅當(dāng),即時,等號成立.∴所求最大值為.故選:B.【點睛】本題考查用基本不等式求最值,注意基本不等式求最值的條件:一正二定三相等.9、B【解析】試題分析:∵,∴,即,∴不等式的解集為.考點:分式不等式轉(zhuǎn)化為一元二次不等式.10、B【解析】
以為坐標(biāo)原點建立平面直角坐標(biāo)系,設(shè)正方形邊長為,利用平面向量的坐標(biāo)運算建立有關(guān)、的方程組,求出這兩個量的值,可得出的值.【詳解】以為坐標(biāo)原點建立平面直角坐標(biāo)系,設(shè)正方形邊長為,由此,,故,解得.故選B.【點睛】本題考查平面向量的線性運算,考查平面向量的基底表示,解題時也可以利用坐標(biāo)法來求解,考查運算求解能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知結(jié)合同角三角函數(shù)基本關(guān)系式可得,然后分子分母同時除以求解.【詳解】,.故答案為:.【點睛】本題考查三角函數(shù)的化簡求值,考查同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)的計算題.12、【解析】
根據(jù)向量減法運算得結(jié)果.【詳解】利用向量的三角形法則,可得,,又,,則,.故答案為.【點睛】本題考查向量表示,考查基本化解能力13、【解析】
利用二次不等式解集與二次方程根的關(guān)系,由二次不等式的解集得到二次方程的根,再利用根與系數(shù)的關(guān)系,得到和的值,得到答案.【詳解】因為關(guān)于的不等式的解集是,所以關(guān)于的方程的解是,由根與系數(shù)的關(guān)系得,解得,所以.【點睛】本題考查二次不等式解集和二次方程根之間的關(guān)系,屬于簡單題.14、.【解析】
確定函數(shù)的單調(diào)性,由單調(diào)性確定最小值.【詳解】由題意在上是增函數(shù),在上是減函數(shù),又,∴,,故答案為.【點睛】本題考查分段函數(shù)的單調(diào)性.由單調(diào)性確定最小值,15、【解析】
根據(jù)分層抽樣的定義建立比例關(guān)系,即可得到答案。【詳解】設(shè)抽取的樣本中老年教師的人數(shù)為,學(xué)校所有的中老年教師人數(shù)為270人由分層抽樣的定義可知:,解得:故答案為【點睛】本題考查分層抽樣,考查學(xué)生的計算能力,屬于基礎(chǔ)題。16、【解析】
根據(jù)即可得出,進(jìn)行數(shù)量積的坐標(biāo)運算即可求出x.【詳解】∵;∴;∴x=﹣1;故答案為﹣1.【點睛】考查向量垂直的充要條件,以及向量數(shù)量積的坐標(biāo)運算,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析【解析】(1)因為,,故,(2)要證明原命題,只需證明對任意都成立,即只需證明若,顯然有成立;若,則顯然成立綜上,恒成立,即對任意的,(3)由(2)知,若為等差數(shù)列,則公差,故n無限增大時,總有此時,即故,即,當(dāng)時,等式成立,且時,,此時為等差數(shù)列,滿足題意;若,則,此時,也滿足題意;綜上,滿足題意的的取值范圍是.【考點定位】考查數(shù)列與函數(shù)的綜合應(yīng)用,屬難題.18、(1);(2)【解析】
(1)設(shè),再根據(jù)化簡求解方程即可.(2)設(shè)過定點的直線方程為,根據(jù)軸平分可得.再聯(lián)立直線與圓的方程,化簡利用韋達(dá)定理求解中參數(shù)的關(guān)系,進(jìn)而求得定點即可.【詳解】(1)設(shè),因為,故,即,整理可得.(2)當(dāng)直線與軸垂直,且在圓內(nèi)時,易得關(guān)于軸對稱,故必有軸平分.當(dāng)直線斜率存在時,設(shè)過定點的直線方程為.設(shè).聯(lián)立,.因為無論直線如何運動,軸都平分,故,即,所以,.所以代入韋達(dá)定理有,化簡得.故,恒過定點.即.【點睛】本題主要考查了軌跡方程的求解方法以及聯(lián)立直線與圓的方程,利用韋達(dá)定理代入題中所給的關(guān)系式,化簡求直線中參數(shù)的關(guān)系求得定點的問題.屬于難題.19、(1)證明見解析(2)【解析】
(1)連接,,作為棱的中點,連結(jié),,由平面平面,得到平面,則,再由,即可證明平面,從而得證;(2)根據(jù)等體積法求出點面距.【詳解】(1)證明:連接,.∵,,∴是等邊三角形.作為棱的中點,連結(jié),,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴平行四邊形是菱形.∴.又,分別為,的中點,∴,∴.又,平面,平面.∴平面.又平面,∴.(2)解:連接,∵,,∴為正三角形.∵為的中點,∴,同理可得又∵平面平面,且平面平面,平面,∴平面.∴,又三棱柱的高即點到平面的距離.在中,,,則.又∵,∴,則.【點睛】本題考查線面垂直,線線垂直的證明,三棱錐的體積及點到平面的距離的計算,屬于中檔題.20、11【解析】
根據(jù)題設(shè)條件,結(jié)合三角數(shù)的基本關(guān)系式,分別求得,和,再利用兩角和的正切的公式,進(jìn)行化簡、運算,即可求解.【詳解】由,由,可得又由,所以,由,得,可得,所以,即.【點睛】本題主要考查了兩角和與差的正切函數(shù)的化簡、求值問題,其中解答中熟記兩角和與差的正切公式,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,試題有一定的難度,屬于中檔試題.21、(1);(2)增區(qū)間是,對稱軸為【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四年級數(shù)學(xué)教學(xué)計劃3篇
- 甘肅省天水市2024-2025學(xué)年高三上學(xué)期九校聯(lián)考語文試題
- 自考《勞動法(00167)》近年考試真題題庫(含答案)
- 2025年江蘇職教高考《職業(yè)適應(yīng)性測試》考前沖刺模擬試題庫(附答案)
- 《個人信息保護(hù)法》考試參考試題庫100題(含答案)
- 2025年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年武漢職業(yè)技術(shù)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025年榆林能源科技職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年新疆職業(yè)大學(xué)高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 專題07 解二元一次方程組 帶解析
- 2025-2030年中國硫酸鉀行業(yè)深度調(diào)研及投資戰(zhàn)略研究報告
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院2025年工作計劃
- 2024年山東省泰安市初中學(xué)業(yè)水平生物試題含答案
- 機(jī)械工程類基礎(chǔ)知識單選題100道及答案解析
- 冠心病課件完整版本
- 微生物組與膽汁性肝硬化
- 帶式輸送機(jī)滾筒出廠檢驗規(guī)范
- 《信息檢索基礎(chǔ)知識》課件
- 具有履行合同所必須的設(shè)備和專業(yè)技術(shù)能力的承諾函-設(shè)備和專業(yè)技術(shù)能力承諾
- 1325木工雕刻機(jī)操作系統(tǒng)說明書
- 初中衡水體英語(28篇)
評論
0/150
提交評論