版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆甘肅省慶陽(yáng)市第六中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)集合,,則()A. B. C. D.2.若復(fù)數(shù)(是虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)的值為()A. B. C. D.3.一元二次不等式的解集為()A. B.C. D.4.如下圖是一個(gè)正方體的平面展開圖,在這個(gè)正方體中①②與成角③與為異面直線④以上四個(gè)命題中,正確的序號(hào)是()A.①②③ B.②④ C.③④ D.②③④5.在中,角,,所對(duì)的邊分別為,,,若,則的值為()A. B. C. D.6.已知奇函數(shù)滿足,則的取值不可能是()A.2 B.4 C.6 D.107.某學(xué)生四次模擬考試時(shí),其英語(yǔ)作文的減分情況如下表:考試次數(shù)x
1
2
3
4
所減分?jǐn)?shù)y
4.5
4
3
2.5
顯然所減分?jǐn)?shù)y與模擬考試次數(shù)x之間有較好的線性相關(guān)關(guān)系,則其線性回歸方程為()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.258.已知函數(shù),則下列命題正確的是()①的最大值為2;②的圖象關(guān)于對(duì)稱;③在區(qū)間上單調(diào)遞增;④若實(shí)數(shù)m使得方程在上恰好有三個(gè)實(shí)數(shù)解,,,則;A.①② B.①②③ C.①③④ D.①②③④9.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》第六章“均輸”中有這樣一個(gè)問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”(注:“均輸”即按比例分配,此處是指五人所得成等差數(shù)列;“錢”是古代的一種計(jì)量單位),則分得最少的一個(gè)得到()A.錢 B.錢 C.錢 D.1錢10.若滿足約束條件,則的最小值是()A.0 B. C. D.3二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值為,最小值為,則的最小正周期為______.12.已知四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)均為.若圓柱的一個(gè)底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點(diǎn),另一個(gè)底面的圓心為四棱錐底面的中心,則該圓柱的體積為__________.13.在上,滿足的的取值范圍是______.14.函數(shù)的部分圖象如圖所示,則函數(shù)的解析式為______.15.已知扇形的圓心角為,半徑為,則扇形的面積.16.若數(shù)列是正項(xiàng)數(shù)列,且,則_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知點(diǎn)是函數(shù)的圖象上一點(diǎn),等比數(shù)列的前n項(xiàng)和為,數(shù)列的首項(xiàng)為c,且前n項(xiàng)和滿足:當(dāng)時(shí),都有.(1)求c的值;(2)求證:為等差數(shù)列,并求出.(3)若數(shù)列前n項(xiàng)和為,是否存在實(shí)數(shù)m,使得對(duì)于任意的都有,若存在,求出m的取值范圍,若不存在,說明理由.18.已知向量,,函數(shù).(1)若,,求的值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.19.已知圓的方程為,直線l的方程為,點(diǎn)P在直線l上,過點(diǎn)P作圓的切線PA,PB,切點(diǎn)為A,B.(1)若,求點(diǎn)P的坐標(biāo);(2)求證:經(jīng)過A,P,三點(diǎn)的圓必經(jīng)過異于的某個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).20.從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄,(單位:千元)的數(shù)據(jù)資料,算出,附:線性回歸方程,其中為樣本平均值.(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;(2)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.21.已知數(shù)列的前項(xiàng)和();(1)判斷數(shù)列是否為等差數(shù)列;(2)設(shè),求;(3)設(shè)(),,是否存在最小的自然數(shù),使得不等式對(duì)一切正整數(shù)總成立?如果存在,求出;如果不存在,說明理由;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】試題分析:集合,集合,所以,故選D.考點(diǎn):1、一元二次不等式;2、集合的運(yùn)算.2、C【解析】,且是純虛數(shù),,故選C.3、C【解析】
根據(jù)一元二次不等式的解法,即可求得不等式的解集,得到答案.【詳解】由題意,不等式,即或,解得,即不等式的解集為,故選C.【點(diǎn)睛】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.4、D【解析】由已知中正方體的平面展開圖,得到正方體的直觀圖如上圖所示:
由正方體的幾何特征可得:①不平行,不正確;
②AN∥BM,所以,CN與BM所成的角就是∠ANC=60°角,正確;③與不平行、不相交,故異面直線與為異面直線,正確;
④易證,故,正確;故選D.5、B【解析】
化簡(jiǎn)式子得到,利用正弦定理余弦定理原式等于,代入數(shù)據(jù)得到答案.【詳解】利用正弦定理和余弦定理得到:故選B【點(diǎn)睛】本題考查了正弦定理,余弦定理,三角恒等變換,意在考查學(xué)生的計(jì)算能力.6、B【解析】
由三角函數(shù)的奇偶性和對(duì)稱性可求得參數(shù)的值.【詳解】由是奇函數(shù)得又因?yàn)榈藐P(guān)于對(duì)稱,所以,解得所以當(dāng)時(shí),得A答案;當(dāng)時(shí),得C答案;當(dāng)時(shí),得D答案;故選B.【點(diǎn)睛】本題考查三角函數(shù)的奇偶性和對(duì)稱性,屬于基礎(chǔ)題.7、D【解析】試題分析:先求樣本中心點(diǎn),利用線性回歸方程一定過樣本中心點(diǎn),代入驗(yàn)證,可得結(jié)論.解:先求樣本中心點(diǎn),,由于線性回歸方程一定過樣本中心點(diǎn),代入驗(yàn)證可知y=﹣0.7x+5.25,滿足題意故選D.點(diǎn)評(píng):本題考查線性回歸方程,解題的關(guān)鍵是利用線性回歸方程一定過樣本中心點(diǎn),屬于基礎(chǔ)題.8、C【解析】
,由此判斷①的正誤,根據(jù)判斷②的正誤,由求出的單調(diào)遞增區(qū)間,即可判斷③的正誤,結(jié)合的圖象判斷④的正誤.【詳解】因?yàn)椋盛僬_因?yàn)?,故②不正確由得所以在區(qū)間上單調(diào)遞增,故③正確若實(shí)數(shù)m使得方程在上恰好有三個(gè)實(shí)數(shù)解,結(jié)合的圖象知,必有此時(shí),另一解為即,,滿足,故④正確綜上可知:命題正確的是①③④故選:C【點(diǎn)睛】本題考查的是三角函數(shù)的圖象及其性質(zhì),解決這類問題時(shí)首先應(yīng)把函數(shù)化成三角函數(shù)基本型.9、B【解析】
設(shè)所成等差數(shù)列的首項(xiàng)為,公差為,利用等差數(shù)列前項(xiàng)和公式及通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,進(jìn)而得出答案.【詳解】由題意五人所分錢成等差數(shù)列,設(shè)得錢最多的為,則公差.所以,則.又,即則,分得最少的一個(gè)得到.故選:B【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.10、A【解析】可行域?yàn)橐粋€(gè)三角形及其內(nèi)部,其中,所以直線過點(diǎn)時(shí)取最小值,選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先換元,令,所以,利用一次函數(shù)的單調(diào)性,列出等式,求出,然后利用正切型函數(shù)的周期公式求出即可.【詳解】令,所以,由于,所以在上單調(diào)遞減,即有,解得,,故最小正周期為.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,正切型函數(shù)周期公式的應(yīng)用,以及換元法的應(yīng)用.12、.【解析】
根據(jù)棱錐的結(jié)構(gòu)特點(diǎn),確定所求的圓柱的高和底面半徑.【詳解】由題意四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)均為,借助勾股定理,可知四棱錐的高為,.若圓柱的一個(gè)底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點(diǎn),圓柱的底面半徑為,一個(gè)底面的圓心為四棱錐底面的中心,故圓柱的高為,故圓柱的體積為.【點(diǎn)睛】本題主要考查了圓柱與四棱錐的組合,考查了空間想象力,屬于基礎(chǔ)題.13、【解析】
由,結(jié)合三角函數(shù)線,即可求解,得到答案.【詳解】如圖所示,因?yàn)?,所以滿足的的取值范圍為.【點(diǎn)睛】本題主要考查了特殊角的三角函數(shù)值,以及三角函數(shù)線的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】
根據(jù)三角函數(shù)圖象依次求得的值.【詳解】由圖象可知,,所以,故,將點(diǎn)代入上式得,因?yàn)?,所?故.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)的圖象求三角函數(shù)的解析式,屬于基礎(chǔ)題.15、【解析】試題分析:由題可知,;考點(diǎn):扇形面積公式16、【解析】
有已知條件可得出,時(shí),與題中的遞推關(guān)系式相減即可得出,且當(dāng)時(shí)也成立?!驹斀狻繑?shù)列是正項(xiàng)數(shù)列,且所以,即時(shí)兩式相減得,所以()當(dāng)時(shí),適合上式,所以【點(diǎn)睛】本題考差有遞推關(guān)系式求數(shù)列的通項(xiàng)公式,屬于一般題。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1;(2)證明見解析,;(3)存在,.【解析】
(1)根據(jù)題意可得,再根據(jù)等比數(shù)列的性質(zhì)即可求出c(2)根據(jù)題意可得,然后求出和(3)利用裂項(xiàng)求和法求出前n項(xiàng)和為,然后就可得出m的范圍【詳解】(1)因?yàn)樗?,即即前n項(xiàng)和為,所以,因?yàn)槭堑缺葦?shù)列所以有,即解得(2)且數(shù)列構(gòu)成一個(gè)首項(xiàng)為1,公差為1的等差數(shù)列所以,即
所以(3)因?yàn)閷?duì)于任意的都有所以【點(diǎn)睛】常見的數(shù)列求和方法有公式法即等差等比數(shù)列的求和公式、分組求和法、裂項(xiàng)相消法、錯(cuò)位相減法.18、(1);(2)【解析】
(1)利用數(shù)量積公式結(jié)合二倍角公式,輔助角公式化簡(jiǎn)函數(shù)解析式,由,結(jié)合的范圍以及平方關(guān)系得出的值,由結(jié)合兩角差的余弦公式求解即可;(2)由整體法結(jié)合正弦函數(shù)的單調(diào)性得出該函數(shù)的單調(diào)增區(qū)間,則區(qū)間應(yīng)該包含在的一個(gè)增區(qū)間內(nèi),根據(jù)包含關(guān)系列出不等式組,求解即可得出正數(shù)的取值范圍.【詳解】(1)因?yàn)?,所以,?因?yàn)?,所以所?所以.(2).令,得,因?yàn)楹瘮?shù)在區(qū)間上是單調(diào)遞增函數(shù)所以存在,使得所以有,即因?yàn)椋杂忠驗(yàn)?,所以,則,所以從而有,所以,所以.【點(diǎn)睛】本題主要考查了利用同角三角函數(shù)的基本關(guān)系,二倍角公式,兩角差的余弦公式化簡(jiǎn)求值以及根據(jù)正弦型函數(shù)的單調(diào)性求參數(shù)范圍,屬于較難題.19、(1)和;(2)和【解析】
(1)設(shè),連接,分析易得,即有,解得的值,即可得到答案.(2)根據(jù)題意,分析可得:過A,P,三點(diǎn)的圓為以為直徑的圓,設(shè)的坐標(biāo)為,用表示過A,P,三點(diǎn)的圓為,結(jié)合直線與圓的位置關(guān)系,分析可得答案.【詳解】(1)根據(jù)題意,點(diǎn)P在直線l上,設(shè),連接,因?yàn)閳A的方程為,所以圓心,半徑,因?yàn)檫^點(diǎn)P作圓的切線PA,PB,切點(diǎn)為A,B;則有,且,易得,又由,即,則,即有,解得或,即的坐標(biāo)為和.(2)根據(jù)題意,是圓的切線,則,則過A,P,三點(diǎn)的圓為以為直徑的圓,設(shè)的坐標(biāo)為,,則以為直徑的圓為,變形可得:,即,則有,解得或,則當(dāng)和,時(shí),恒成立,則經(jīng)過A,P,三點(diǎn)的圓必經(jīng)過異于的某個(gè)定點(diǎn),且定點(diǎn)的坐標(biāo)和.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系、圓中的定點(diǎn)問題,考查學(xué)生分析問題、解決問題的能力,屬于中檔題.20、(1);(2)1.7【解析】
(1)根據(jù)數(shù)據(jù),利用最小二乘法,即可求得y對(duì)月收入x的線性回歸方程回歸方程x;(2)將x=7代入即可預(yù)測(cè)該家庭的月儲(chǔ)蓄.【詳解】(1)由題意知,,∴由.故所求回歸方程為(2)將代入回歸方程可以預(yù)測(cè)該家庭的月儲(chǔ)蓄為(千元).【點(diǎn)睛】本題考查線性回歸方程的應(yīng)用,考查最小二乘法求線性回歸方程,考查轉(zhuǎn)化思想,屬于中檔題.21、(1)否;(2);(3);【解析】
(1)根據(jù)數(shù)列中與的關(guān)系式,即可求解數(shù)列的通項(xiàng)公式,再結(jié)合等差數(shù)列的定義,即可求解;(2)由(1)知,求得當(dāng)時(shí),,當(dāng)時(shí),,利用等差數(shù)列的前項(xiàng)和公式,分類討論,即可求解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- (立項(xiàng)說明)工業(yè)合成油項(xiàng)目投資計(jì)劃書
- 石河子大學(xué)《儀器分析實(shí)驗(yàn)》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《書寫技能訓(xùn)練一》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《經(jīng)典音樂歌舞電影賞析》2022-2023學(xué)年期末試卷
- 沈陽(yáng)理工大學(xué)《數(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《科技文獻(xiàn)檢索》2022-2023學(xué)年第一學(xué)期期末試卷
- 2018年四川內(nèi)江中考滿分作文《我心中的英雄》21
- 沈陽(yáng)理工大學(xué)《Matab原理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州新概念新型材料合同套路
- 合肥市場(chǎng)監(jiān)管局股權(quán)質(zhì)押合同模板
- 電子商務(wù)師職業(yè)技能等級(jí)證書培訓(xùn)方案
- JBT 14615-2024 內(nèi)燃機(jī) 活塞運(yùn)動(dòng)組件 清潔度限值及測(cè)定方法(正式版)
- DL5009.2-2013電力建設(shè)安全工作規(guī)程第2部分:電力線路
- 八年級(jí)下冊(cè) 第六單元 23《馬說》公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 理智與情感:愛情的心理文化之旅智慧樹知到期末考試答案章節(jié)答案2024年昆明理工大學(xué)
- GA/T 2097-2023執(zhí)法辦案管理場(chǎng)所信息應(yīng)用技術(shù)要求
- GB 20052-2024電力變壓器能效限定值及能效等級(jí)
- 陶行知與鄉(xiāng)村教育智慧樹知到期末考試答案章節(jié)答案2024年麗水學(xué)院
- 手術(shù)切口感染PDCA案例
- 依托國(guó)家中小學(xué)智慧教育平臺(tái)開展有效教學(xué)的研究課題申報(bào)評(píng)審書
- 小學(xué)大思政課實(shí)施方案設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論