2023-2024學(xué)年鞍山市重點中學(xué)數(shù)學(xué)高一下期末檢測模擬試題含解析_第1頁
2023-2024學(xué)年鞍山市重點中學(xué)數(shù)學(xué)高一下期末檢測模擬試題含解析_第2頁
2023-2024學(xué)年鞍山市重點中學(xué)數(shù)學(xué)高一下期末檢測模擬試題含解析_第3頁
2023-2024學(xué)年鞍山市重點中學(xué)數(shù)學(xué)高一下期末檢測模擬試題含解析_第4頁
2023-2024學(xué)年鞍山市重點中學(xué)數(shù)學(xué)高一下期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年鞍山市重點中學(xué)數(shù)學(xué)高一下期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.名小學(xué)生的身高(單位:cm)分成了甲、乙兩組數(shù)據(jù),甲組:115,122,105,111,109;乙組:125,132,115,121,119.兩組數(shù)據(jù)中相等的數(shù)字特征是()A.中位數(shù)、極差 B.平均數(shù)、方差C.方差、極差 D.極差、平均數(shù)2.過正方形的頂點,作平面,若,則平面和平面所成的銳二面角的大小是A. B.C. D.3.以分別表示等差數(shù)列的前項和,若,則的值為A.7 B. C. D.4.如直線與平行但不重合,則的值為().A.或2 B.2 C. D.5.在直三棱柱中,底面為直角三角形,,,是上一動點,則的最小值是()A. B. C. D.6.辦公室裝修一新,放些植物花草可以清除異味,公司提供綠蘿、文竹、碧玉、蘆薈4種植物供員工選擇,每個員工任意選擇2種,則員工甲和乙選擇的植物全不同的概率為:A. B. C. D.7.根據(jù)頻數(shù)分布表,可以估計在這堆蘋果中,質(zhì)量大于130克的蘋果數(shù)約占蘋果總數(shù)的()分組頻數(shù)13462A. B. C. D.8.已知向量,則與夾角的大小為()A. B. C. D.9.若是的重心,,,分別是角的對邊,若,則角()A. B. C. D.10.若直線與曲線有公共點,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,為原點,,動點滿足,則的最大值是.12.設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項和為{Sn}.若,,則q=______________.13.關(guān)于函數(shù)有下列命題:①由可得必是的整數(shù)倍;②的圖像關(guān)于點對稱,其中正確的序號是____________.14.函數(shù)在區(qū)間上的值域為______.15.已知,則______;的最小值為______.16.函數(shù)的單調(diào)遞減區(qū)間是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,求的值.18.在中,已知角的對邊分別為,且.(1)求角的大??;(2)若,,求的面積.19.如圖,在正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,連接.(1)求證:;(2)點是上一點,若平面,則為何值?并說明理由.(3)若,求二面角的余弦值.20.在銳角中,角,,的對邊分別為,,,若.(1)求角;(2)若,則周長的取值范圍.21.某運動愛好者對自己的步行運動距離(單位:千米)和步行運動時間(單位:分鐘)進(jìn)行統(tǒng)計,得到如下的統(tǒng)計資料:如果與存在線性相關(guān)關(guān)系,(1)求線性回歸方程(精確到0.01);(2)將分鐘的時間數(shù)據(jù)稱為有效運動數(shù)據(jù),現(xiàn)從這6個時間數(shù)據(jù)中任取3個,求抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的概率.參考數(shù)據(jù):,參考公式:,.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

將甲、乙兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、方差全部算出來,并進(jìn)行比較,可得出答案.【詳解】甲組數(shù)據(jù)由小到大排列依次為:、、、、,極差為,平均數(shù)為中位數(shù)為,方差為,乙組數(shù)據(jù)由小到大排列依次為:、、、、,極差為,平均數(shù)為中位數(shù)為,方差為,因此,兩組數(shù)據(jù)相等的是極差和方差,故選C.【點睛】本題考查樣本的數(shù)字特征,理解極差、平均數(shù)、中位數(shù)、方差的定義并利用相關(guān)公式進(jìn)行計算是解本題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.2、B【解析】法一:建立如圖(1)所示的空間直角坐標(biāo)系,不難求出平面APB與平面PCD的法向量分別為n1=(0,1,0),n2=(0,1,1),故平面ABP與平面CDP所成二面角的余弦值為=,故所求的二面角的大小是45°.法二:將其補成正方體.如圖(2),不難發(fā)現(xiàn)平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小為45°.3、B【解析】

根據(jù)等差數(shù)列前n項和的性質(zhì),當(dāng)n為奇數(shù)時,,即可把轉(zhuǎn)化為求解.【詳解】因為數(shù)列是等差數(shù)列,所以,故,選B.【點睛】本題主要考查了等差數(shù)列前n項和的性質(zhì),屬于中檔題.4、C【解析】

兩直線斜率相等,且截距不相等?!驹斀狻拷馕觯河深}意得,,解得或2,經(jīng)檢驗時兩直線重合,故.故選C.【點睛】本題考查兩直線平行,屬于基礎(chǔ)題.5、B【解析】

連,沿將展開與在同一個平面內(nèi),不難看出的最小值是的連線,由余弦定理即可求解.【詳解】解:連,沿將展開與在同一個平面內(nèi),如圖所示,

連,則的長度就是所求的最小值.

,可得

又,

,

在中,由余弦定理可求得,故選B.【點睛】本題考查棱柱的結(jié)構(gòu)特征,余弦定理的應(yīng)用,是中檔題.6、A【解析】

從公司提供的4中植物中任意選擇2種,求得員工甲和乙共有種選法,再由任選2種有種,得到員工甲和乙選擇的植物全不同有種選法,利用古典概型的概率計算公式,即可求解.【詳解】由題意,從公司提供綠蘿、文竹、碧玉、蘆薈4種植物每個員工任意選擇2種,則員工甲和乙共有種不同的選法,又從公司提供綠蘿、文竹、碧玉、蘆薈4種植物中,任選2種,共有種選法,則員工甲和乙選擇的植物全不同,共有種不同的選法,所以員工甲和乙選擇的植物全不同的概率為,故選A.【點睛】本題主要考查了古典概型及其概率的計算,以及排列、組合的應(yīng)用,其中解答中認(rèn)真審題,合理利用排列、組合求得基本事件的個數(shù),利用古典概型的概率計算公式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.7、C【解析】

根據(jù)頻數(shù)分布表計算出質(zhì)量大于130克的蘋果的頻率,由此得出正確選項.【詳解】根據(jù)頻數(shù)分布表可知,所以質(zhì)量大于克的蘋果數(shù)約占蘋果總數(shù)的.故選:C【點睛】本小題主要考查頻數(shù)分析表的閱讀與應(yīng)用,屬于基礎(chǔ)題.8、D【解析】

。分別求出,,,利用即可得出答案.【詳解】設(shè)與的夾角為故選:D【點睛】本題主要考查了求向量的夾角,屬于基礎(chǔ)題.9、D【解析】試題分析:由于是的重心,,,代入得,整理得,,因此,故答案為D.考點:1、平面向量基本定理;2、余弦定理的應(yīng)用.10、D【解析】

將本題轉(zhuǎn)化為直線與半圓的交點問題,數(shù)形結(jié)合,求出的取值范圍【詳解】將曲線的方程化簡為即表示以為圓心,以2為半徑的一個半圓,如圖所示:由圓心到直線的距離等于半徑2,可得:解得或結(jié)合圖象可得故選D【點睛】本題主要考查了直線與圓的位置關(guān)系,考查了轉(zhuǎn)化能力,在解題時運用點到直線的距離公式來計算,數(shù)形結(jié)合求出結(jié)果,本題屬于中檔題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

試題分析:設(shè),表示以為圓心,r=1為半徑的圓,而,所以,,,故得最大值為考點:1.圓的標(biāo)準(zhǔn)方程;2.向量模的運算12、【解析】將,兩個式子全部轉(zhuǎn)化成用,q表示的式子.即,兩式作差得:,即:,解之得:(舍去)13、②【解析】

對①,可令求出的通式,再進(jìn)行判斷;對②,將代入檢驗是否為0即可【詳解】對①,令得,可令,,①錯;對②,當(dāng)時,,②對故正確序號為:②故答案為②【點睛】本題考查三角函數(shù)的基本性質(zhì),屬于基礎(chǔ)題14、【解析】

由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)可求得值域.【詳解】,,則,.故答案為:.【點睛】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數(shù)的的單調(diào)性和最值.求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個角的一個三角函數(shù)形式,然后結(jié)合正弦函數(shù)的性質(zhì)得出結(jié)論.15、50【解析】

由分段函數(shù)的表達(dá)式,代入計算即可;先求出的表達(dá)式,結(jié)合分段函數(shù)的性質(zhì),求最小值即可.【詳解】由,可得,,所以;由的表達(dá)式,可得,當(dāng)時,,此時,當(dāng)時,,由二次函數(shù)的性質(zhì)可知,,綜上,的最小值為0.故答案為:5;0.【點睛】本題考查求函數(shù)值,考查分段函數(shù)的性質(zhì),考查函數(shù)最值的計算,考查學(xué)生的計算能力,屬于基礎(chǔ)題.16、【解析】

求出函數(shù)的定義域,結(jié)合復(fù)合函數(shù)求單調(diào)性的方法求解即可.【詳解】由,解得令,則函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增函數(shù)在定義域內(nèi)單調(diào)遞增函數(shù)的單調(diào)遞減區(qū)間是故答案為:【點睛】本題主要考查了復(fù)合函數(shù)的單調(diào)性,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

∵,且,∴,則,∴===-.考點:本題考查了三角恒等變換18、(1);(2).【解析】

(1)利用邊角互化思想得,由結(jié)合兩角和的正弦公式可求出的值,于此得出角的大?。唬?)由余弦定理可計算出,再利用三角形的面積公式可得出的面積.【詳解】(1)∵是的內(nèi)角,∴且,又由正弦定理:得:,化簡得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面積為.【點睛】本題考查正弦定理邊角互化的思想,考查余弦定理以及三角形的面積公式,本題巧妙的地方在于將配湊為,避免利用方程思想求出邊的值,考查計算能力,屬于中等題.19、(1)證明見詳解;(2),理由見詳解;(3).【解析】

(1)通過證明EF平面PBD,即可證明;(2)通過線面平行,將問題轉(zhuǎn)化為線線平行,在平面圖形中根據(jù)線段比例進(jìn)而求解;(3)根據(jù)(1)(2)所得,找到二面角的平面角,然后再進(jìn)行求解.【詳解】(1)證明:因為四邊形ABCD為正方形,故DAAE,DC,即折疊后的DP又因為平面PEF,平面PEF,故DP平面PEF,又平面PEF,故.在正方形ABCD中,容易知EF,又平面PBD,平面PBD,故EF平面PBD,又平面PBD故,即證.(2)連接BD交EF于O,連接OM,作圖如下因為//平面,平面PBD,平面PBD平面=MO故//MO在中,由,以及E、F分別是正方形ABCD兩邊的中點,故可得即為所求.(3)過M作MH垂直于BD,垂足為H,連接OP,作圖如下:由(1)可知:EF平面PBD,因為MH平面PBD,故EF又,平面EDF,BD平面EDF,故MH平面EDF,又因為BDEF,故即為所求二面角的平面角.設(shè)正方形ABCD的邊長為4,因為,故PM=1,故在中,PM=1,EP=2,根據(jù)勾股定理可得ME同理:在中,PM=1,PF=2,根據(jù)勾股定理可得MF=又EF=故在等腰三角形EMF中,因為O是EF的中點,故MO=.由(1)可知,PD平面PEF,又OP平面PEF,故PDOP,則,故可得,又在中,PE=PF=2,EF=2,O為斜邊EF上的中點,故OP=,又因為MD=3,OD=故可解得MH=故在中,MH=1,MO=,由勾股定理可得OH=故.故二面角的余弦值為.【點睛】本題考查由線面垂直推證線線垂直,由線面平行得到線線平行,以及二面角的求解,屬綜合中檔題.20、(1)(2)【解析】

(1)利用切化成弦和余弦定理對等式進(jìn)行化簡,得角的正弦值;(2)利用成正弦定理把邊化成角,從而實現(xiàn)的周長用角B的三角函數(shù)進(jìn)行表示,即周長,再根據(jù)銳角三角形中角,求得函數(shù)值域.【詳解】(1)由,得到,又,所以.(2),,設(shè)周長為,由正弦定理知,由合分比定理知,即,,即.又因為為銳角三角形,所以.,周長.【點睛】對運動變化問題,首先要明確變化的量是什么?或者選定什么量為變量?然后,利用函數(shù)與方程思想,把所求的目標(biāo)表示成關(guān)于變量的函數(shù),再研究函數(shù)性質(zhì)進(jìn)行問題求解.21、(1)(2)【解析】

(1)先計算所給數(shù)據(jù)距離、時間的平均值,,利用公式求,再利用回歸方程求.(2)由(1)計算的個數(shù),先求從6個中任取3個數(shù)據(jù)的總的取法,再計算抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的取法,利用古典概型概率計算公式可得所求.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論