版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023-2024學年穩(wěn)派教育高三(最后沖刺)數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若關于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.2.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.3.一個組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.4.已知數(shù)列,,,…,是首項為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.45.已知等式成立,則()A.0 B.5 C.7 D.136.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.7.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.8.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或9.設不等式組表示的平面區(qū)域為,若從圓:的內(nèi)部隨機選取一點,則取自的概率為()A. B. C. D.10.已知向量與的夾角為,,,則()A. B.0 C.0或 D.11.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.505012.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)列滿足,則,_____.若存在n∈N*使得成立,則實數(shù)λ的最小值為______14.若實數(shù)x,y滿足約束條件,則的最大值為________.15.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.16.設函數(shù),若對于任意的,∈[2,,≠,不等式恒成立,則實數(shù)a的取值范圍是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列中,,是和的等差中項.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.18.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.19.(12分)已知橢圓:()的左、右焦點分別為和,右頂點為,且,短軸長為.(1)求橢圓的方程;(2)若過點作垂直軸的直線,點為直線上縱坐標不為零的任意一點,過作的垂線交橢圓于點和,當時,求此時四邊形的面積.20.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.21.(12分)某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關于開關旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關于的回歸方程;(3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,22.(10分)交通部門調(diào)查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關;平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員女性駕駛員合計(2)根據(jù)這些樣本數(shù)據(jù)來估計總體,隨機調(diào)查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結(jié)果相互獨立,求的分布列和數(shù)學期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用換元法設,則等價為有且只有一個實數(shù)根,分三種情況進行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設,則有且只有一個實數(shù)根.當時,當時,,由即,解得,結(jié)合圖象可知,此時當時,得,則是唯一解,滿足題意;當時,此時當時,,此時函數(shù)有無數(shù)個零點,不符合題意;當時,當時,,此時最小值為,結(jié)合圖象可知,要使得關于的方程有且只有一個實數(shù)根,此時.綜上所述:或.故選:A.【點睛】本題考查了函數(shù)方程根的個數(shù)的應用.利用換元法,數(shù)形結(jié)合是解決本題的關鍵.2、C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應為k>5?本題選擇C選項.點睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時,要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.3、C【解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.4、A【解析】
根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點睛】本題考查了數(shù)列值的計算,意在考查學生的計算能力.5、D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數(shù)學運算能力.6、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.7、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.8、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.9、B【解析】
畫出不等式組表示的可行域,求得陰影部分扇形對應的圓心角,根據(jù)幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎題.10、B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.11、C【解析】
因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數(shù)陣問題,考查了學生邏輯推理,數(shù)學運算的能力,屬于中檔題.12、B【解析】
分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當,不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用“退一作差法”求得數(shù)列的通項公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【詳解】當時兩式相減得所以當時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設,所以,即,所以單調(diào)遞增,的最小項,即有的最小值為.故答案為:(1).(2).【點睛】本小題主要考查根據(jù)遞推關系式求數(shù)列的通項公式,考查數(shù)列單調(diào)性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.14、3【解析】
作出可行域,可得當直線經(jīng)過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點,當直線經(jīng)過點時,.故答案為:3.【點睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學思想,屬于基礎題.15、【解析】
結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標表示成圓的方程,與橢圓方程聯(lián)立可進一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標準方程、橢圓的幾何性質(zhì)、直線與圓的位置關系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.16、【解析】試題分析:由題意得函數(shù)在[2,上單調(diào)遞增,當時在[2,上單調(diào)遞增;當時在上單調(diào)遞增;在上單調(diào)遞減,因此實數(shù)a的取值范圍是考點:函數(shù)單調(diào)性三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)用等比數(shù)列的首項和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯位相減法求出Tn.【詳解】(1)設數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點睛】本題考查等比數(shù)列的通項公式和等差中項的概念以及錯位相減法求和,考查運算能力,屬中檔題.18、(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解析】
(Ⅰ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據(jù)函數(shù)的單調(diào)性問題轉(zhuǎn)化為證明,即證,令,根據(jù)函數(shù)的單調(diào)性證明即可.【詳解】(Ⅰ)的定義域為且令,得;令,得在上單調(diào)遞增,在上單調(diào)遞減函數(shù)的極大值為,無極小值(Ⅱ),,即由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【點睛】本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及分類討論思想,轉(zhuǎn)化思想,考查不等式的證明,考查運算求解能力及化歸與轉(zhuǎn)化思想,關鍵是能夠構(gòu)造出合適的函數(shù),將問題轉(zhuǎn)化為函數(shù)最值的求解問題,屬于難題.19、(1)(2)【解析】
(1)依題意可得,解方程組即可求出橢圓的方程;(2)設,則,設直線的方程為,聯(lián)立直線與橢圓方程,消去,設,,列出韋達定理,即可表示,再根據(jù)求出參數(shù),從而得出,最后由點到直線的距離得到,由即可得解;【詳解】解:(1)∵,∴解得,∴橢圓的方程為.(2)∵,∴可設,∴.∵,∴,∴設直線的方程為,∴,∴,顯然恒成立.設,,則,,∴.∴,∴,∴解得,解得,∴,,∴.∵此時直線的方程為,,∴點到直線的距離為,∴,即此時四邊形的面積為.【點睛】本題考查橢圓的標準方程及簡單幾何性質(zhì),直線與橢圓的綜合應用,考查計算能力,屬于中檔題.20、(1),;(2).【解析】
(1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數(shù)方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 岸坡拋石工程施工方案
- 環(huán)保技術引領未來環(huán)境科學與城市發(fā)展
- 中小學生欺凌專項治理行動方案
- 現(xiàn)代通信技術在教育領域的應用
- 2024年四年級英語上冊 Module 5 Unit 2 Can Sam play football說課稿 外研版(三起)001
- 2024八年級英語下冊 Unit 2 Plant a PlantLesson 7 Planting Trees說課稿(新版)冀教版
- 2024新教材高中政治 第二單元 經(jīng)濟發(fā)展與社會進步 第四課 我國的個人收入分配與社會保障 4.1《我國的個人收入分配》說課稿 部編版必修2
- Module4 Unit1 Mum bought a new T-shirt for me(說課稿)-2024-2025學年外研版(三起)英語五年級上冊
- 《6 蛋殼與薄殼結(jié)構(gòu)》(說課稿)-2023-2024學年五年級下冊科學蘇教版
- 2025北京市勞務分包合同范本問題范本
- 《住院患者身體約束的護理》團體標準解讀課件
- 中國心力衰竭診斷與治療指南解讀
- API520-安全閥計算PART1(中文版)
- 醫(yī)院信息科考核內(nèi)容標準細則
- 商務提成辦法
- 《統(tǒng)計學》完整袁衛(wèi)-賈俊平課件
- FZ/T 25001-1992工業(yè)用毛氈
- 電商部售后客服績效考核表
- 小提琴協(xié)奏曲《梁?!纷V
- 人教版高中化學必修一第一章《物質(zhì)及其變化》教學課件
- 復工復產(chǎn)工作方案范本【復產(chǎn)復工安全工作方案】
評論
0/150
提交評論