版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省昭通市大關(guān)縣民族中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角A,B,C所對的邊分別為a,b,c,若,,則的值為()A.4 B. C. D.2.函數(shù)的部分圖像如圖所示,則該函數(shù)的解析式為()A. B.C. D.3.若,則()A. B. C. D.4.若,則()A. B. C.或 D.5.已知,則()A. B. C. D.6.棱長為2的正四面體的表面積是()A. B.4 C. D.167.下列說法正確的是()A.命題“若,則.”的否命題是“若,則.”B.是函數(shù)在定義域上單調(diào)遞增的充分不必要條件C.D.若命題,則8.已知,,,則的大小關(guān)系為()A. B. C. D.9.直線:與圓的位置關(guān)系為()A.相離 B.相切 C.相交 D.無法確定10.已知,則的最小值為A.3 B.4 C.5 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.已知正方體中,,分別為,的中點,那么異面直線與所成角的余弦值為______.12.下邊程序執(zhí)行后輸出的結(jié)果是().13.走時精確的鐘表,中午時,分針與時針重合于表面上的位置,則當(dāng)下一次分針與時針重合時,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于_______.14.已知向量滿足,則15.已知圓錐如圖所示,底面半徑為,母線長為,則此圓錐的外接球的表面積為___.16.一個公司共有240名員工,下設(shè)一些部門,要采用分層抽樣方法從全體員工中抽取一個容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列{an}滿足a2=0,a6+a8=-10.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列的前n項和.18.已知函數(shù).(1)當(dāng),時,求不等式的解集;(2)若,,的最小值為2,求的最小值.19.求經(jīng)過直線:與直線:的交點,且分別滿足下列條件的直線方程.(Ⅰ)與直線平行;(Ⅱ)與直線垂直.20.已知中,,,點D在AB上,,并且.(1)求BC的長度;(2)若點E為AB中點,求CE的長度.21.已知正項數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.(Ⅰ)求證:數(shù)列是等差數(shù)列;(Ⅱ)求數(shù)列,的通項公式;(Ⅲ)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由正弦定理可得,,代入即可求解.【詳解】∵,,∴由正弦定理可得,,則.故選:B.【點睛】本題考查正弦定理的簡單應(yīng)用,考查函數(shù)與方程思想,考查運算求解能力,屬于基礎(chǔ)題.2、A【解析】
根據(jù)圖象求出即可得到函數(shù)解析式.【詳解】顯然,因為,所以,所以,由得,所以,即,,因為,所以,所以.故選:A【點睛】本題考查了根據(jù)圖象求函數(shù)解析式,利用周期求,代入最高點的坐標(biāo)求是解題關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】
由及即可得解.【詳解】由,可得.故選C.【點睛】本題主要考查了同角三角函數(shù)的基本關(guān)系及二倍角公式,屬于基礎(chǔ)題.4、D【解析】
利用誘導(dǎo)公式變形,再化弦為切求解.【詳解】由誘導(dǎo)公式化簡得,又,所以原式.故選D【點睛】本題考查三角函數(shù)的化簡求值,考查倍角公式及誘導(dǎo)公式的應(yīng)用,也考查了化弦為切的思想,屬于基礎(chǔ)題.5、C【解析】
根據(jù)特殊值排除A,B選項,根據(jù)單調(diào)性選出C,D選項中的正確選項.【詳解】當(dāng)時,,故A,B兩個選項錯誤.由于,故,所以C選項正確,D選項錯誤.故本小題選C.【點睛】本小題主要考查三角函數(shù)值,考查對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.6、C【解析】
根據(jù)題意求出一個面的面積,然后乘以4即可得到正四面體的表面積.【詳解】每個面的面積為,∴正四面體的表面積為.【點睛】本題考查正四面體的表面積,正四面體四個面均為正三角形.7、D【解析】“若p則q”的否命題是“若則”,所以A錯。在定義上并不是單調(diào)遞增函數(shù),所以B錯。不存在,C錯。全稱性命題的否定是特稱性命題,D對,選D.8、B【解析】
根據(jù)對數(shù)函數(shù)的單調(diào)性可知都大于1,把化成后可得的大小,從而可得的大小關(guān)系.【詳解】因為及都是上的增函數(shù),故,,又,故,選B.【點睛】對數(shù)的大小比較,可通過尋找合適的單調(diào)函數(shù)來構(gòu)建大小關(guān)系,如果底數(shù)不統(tǒng)一,可以利用對數(shù)的運算性質(zhì)統(tǒng)一底數(shù).不同類型的數(shù)比較大小,應(yīng)找一個中間數(shù),通過它實現(xiàn)大小關(guān)系的傳遞.9、C【解析】
求出圓的圓心坐標(biāo)和半徑,然后運用點到直線距離求出的值和半徑進行比較,判定出直線與圓的關(guān)系.【詳解】因為圓,所以圓心,半徑,所以圓心到直線的距離為,則直線與圓相交.故選【點睛】本題考查了直線與圓的位置關(guān)系,運用點到直線的距離公式求出和半徑比較,得到直線與圓的位置關(guān)系.10、C【解析】
由,得,則,利用基本不等式,即可求解.【詳解】由題意,因為,則,所以,當(dāng)且僅當(dāng)時,即時取等號,所以的最小值為5,故選C.【點睛】本題主要考查了基本不等式的應(yīng)用,其中解答中熟記基本不等式的使用條件,合理構(gòu)造是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
異面直線所成角,一般平移到同一個平面求解.【詳解】連接DF,異面直線與所成角等于【點睛】異面直線所成角,一般平移到同一個平面求解.不能平移時通常考慮建系,利用向量解決問題.12、15【解析】試題分析:程序執(zhí)行中的數(shù)據(jù)變化如下:,輸出考點:程序語句13、.【解析】
設(shè)時針轉(zhuǎn)過的角的弧度數(shù)為,可知分針轉(zhuǎn)過的角為,于此得出,由此可計算出的值,從而可得出時針轉(zhuǎn)過的弧度數(shù)的絕對值的值.【詳解】設(shè)時針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由分針的角速度是時針角速度的倍,知分針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由題意可知,,解得,因此,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于,故答案為.【點睛】本題考查弧度制的應(yīng)用,主要是要弄清楚時針與分針旋轉(zhuǎn)的角之間的等量關(guān)系,考查分析問題和計算能力,屬于中等題.14、【解析】試題分析:=,又,,代入可得8,所以考點:向量的數(shù)量積運算.15、【解析】
根據(jù)圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,再根據(jù)勾股定理可得求的半徑.【詳解】由圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,設(shè)球心為,球的半徑為,則,圓,因為,所以,所以,,則有.解得,則.【點睛】本題主要考查了幾何體的外接球,關(guān)鍵是會找到球心求出半徑,通常結(jié)合勾股定理求.屬于難題.16、5【解析】設(shè)一部門抽取的員工人數(shù)為x,則.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)設(shè)等差數(shù)列{an}的公差為d,由已知條件可得,解得,故數(shù)列{an}的通項公式為an=2-n.(2)設(shè)數(shù)列的前n項和為Sn,∵,∴Sn=-記Tn=,①則Tn=,②①-②得:Tn=1+,∴Tn=-,即Tn=4-.∴Sn=-4+=4-4+=.18、(1);(2)【解析】
(1)利用零點討論法解絕對值不等式;(2)利用絕對值三角不等式得到a+b=2,再利用基本不等式求的最小值.【詳解】(1)當(dāng),時,,得或或,解得:,∴不等式的解集為.(2),∴,∴,當(dāng)且僅當(dāng),時取等號.∴的最小值為.【點睛】本題主要考查零點討論法解絕對值不等式,考查絕對值三角不等式和基本不等式求最值,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)先求得直線與直線的交點坐標(biāo).根據(jù)平行直線的斜率關(guān)系得與平行直線的斜率,再由點斜式即可求得直線方程.(Ⅱ)根據(jù)垂直直線的斜率關(guān)系得與垂直的直線斜率,再由點斜式即可求得直線方程.【詳解】解方程組得,所以直線與直線的交點是(Ⅰ)直線,可化為由題意知與直線平行則直線的斜率為又因為過所以由點斜式方程可得化簡得所以與直線平行且過的直線方程為.(Ⅱ)直線的斜率為則由垂直時直線的斜率乘積為可知直線的斜率為由題意知該直線經(jīng)過點,所以由點斜式方程可知化簡可得所以與直線垂直且過的直線方程為.【點睛】本題考查了直線平行與垂直時的斜率關(guān)系,由點斜式求方程的用法,屬于基礎(chǔ)題.20、(1);(2)【解析】
(1)根據(jù)所給條件,結(jié)合三角函數(shù)可先求得.再由即可求得,進而得的值.在中由余弦定理即可求得的值.(2)由(1)可知,而,且E為AB中點,可得,.在可由勾股定理求得,再在由勾股定理求得即可.【詳解】(1)由,,可知,又,可得,所以.在中,由余弦定理可得,所以;(2)由(1)可知,,又點E為AB中點,可得,,在直角中,,在直角中,,所以.【點睛】本題考查了余弦定理在解三角形中的應(yīng)用,線段關(guān)系及勾股定理求線段長的應(yīng)用,屬于基礎(chǔ)題.21、(Ⅰ)見解析;(Ⅱ),;(Ⅲ)a≤1【解析】
(Ⅰ)由已知得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 承攬房屋裝修工程合同
- 房地產(chǎn)轉(zhuǎn)讓合同集錦
- 兼職勞務(wù)合同
- 人力資源服務(wù)合同
- 德漢翻譯服務(wù)合同
- 節(jié)能設(shè)備購銷合同協(xié)議
- 禽蛋類采購合同
- 物業(yè)管理市場分析與競爭策略
- 爆破工程技術(shù)服務(wù)合同
- 軟件銷售代理合作合同
- 全國大學(xué)生英語競賽詞匯大綱
- 情緒障礙跨診斷治療的統(tǒng)一方案
- 聚焦幼兒作品分析的游戲觀察與評價
- 胸外科手術(shù)圍手術(shù)期處理
- 《企業(yè)管理課件:團隊管理知識點詳解PPT》
- 配網(wǎng)設(shè)備缺陷分類及管理重點標(biāo)準(zhǔn)
- 反腐倡廉廉潔行醫(yī)
- UI與交互設(shè)計人機交互設(shè)計(第二版)PPT完整全套教學(xué)課件
- 《插畫設(shè)計》課程標(biāo)準(zhǔn)
- 高考作文答題卡(作文)
- 在鄉(xiāng)村治理中深化推廣運用清單制、積分制、一張圖工作方案
評論
0/150
提交評論