版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆安徽省宣城市三校數(shù)學(xué)高一下期末預(yù)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在中,,用向量,表示,正確的是A. B.C. D.2.直線過點,且與以為端點的線段總有公共點,則直線斜率的取值范圍是()A. B. C. D.3.若數(shù)列對任意滿足,下面給出關(guān)于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個4.在△ABC中,已知,P為線段AB上的點,且的最大值為()A.3B.4C.5D.65.在中,內(nèi)角,,所對的邊分別為,,.若的面積為,則角=()A. B.C. D.6.已知為的一個內(nèi)角,向量.若,則角()A. B. C. D.7.已知函數(shù)f(x)=x,x≥0,|x2A.a(chǎn)<0 B.0<a<1 C.a(chǎn)>1 D.a(chǎn)≥18.在中,若,則的面積為().A.8 B.2 C. D.49.同時拋擲兩枚骰子,朝上的點數(shù)之和為奇數(shù)的概率是()A. B. C. D.10.在中,,,則的最大值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知為鈍角,且,則__________.12.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)13.若向量與平行.則__.14.已知平面向量,,滿足:,且,則的最小值為____.15.已知,則16.設(shè),為單位向量,其中,,且在方向上的射影數(shù)量為2,則與的夾角是___.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)向量.(1)當(dāng)時,求的值;(2)若,且,求的值.18.如圖,在三棱錐中,平面平面為等邊三角形,,且,分別為的中點.(1)求證:平面平面;(2)求三棱錐的體積.19.已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.(1)若,,分別寫出數(shù)列和數(shù)列的通項公式;(2)若是奇函數(shù),且,求;(3)若函數(shù)的圖像關(guān)于點對稱,且當(dāng)時,函數(shù)取得最小值,求的最小值.20.已知是夾角為的單位向量,且,.(1)求;(2)求與的夾角.21.從含有兩件正品和一件次品的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求:(1)一切可能的結(jié)果組成的基本事件空間.(2)取出的兩件產(chǎn)品中恰有一件次品的概率
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由得,再由向量的加法得,最后把代入,求得答案.【詳解】因為,故選C.【點睛】本題考查向量的加法和數(shù)乘運算的幾何意義,考查平面向量基本定理在圖形中的應(yīng)用.2、C【解析】
求出,判斷當(dāng)斜率不存在時是否滿足題意,滿足兩數(shù)之外;不滿足兩數(shù)之間.【詳解】,當(dāng)斜率不存在時滿足題意,即【點睛】本題主要考查斜率公式的應(yīng)用,屬于基礎(chǔ)題.3、C【解析】
由已知可得an﹣an﹣1=2,或an=2an﹣1,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案.【詳解】∵數(shù)列{an}對任意n≥2(n∈N)滿足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差為2的等差數(shù)列,正確;②{an}可以是公比為2的等比數(shù)列,正確;③若{an}既是等差又是等比數(shù)列,即此時公差為0,公比為1,由①②得,③錯誤;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,當(dāng)數(shù)列為:1,3,6,8,16……得{an}既不是等差也不是等比數(shù)列,故④正確;故選C.【點睛】本題以命題的真假判斷與應(yīng)用為載體,考查了等差,等比數(shù)列的相關(guān)內(nèi)容,屬于中檔題.4、A【解析】試題分析:在中,設(shè),∵,,即,∴,∵,∴,即.∵,,∴,,∴.根據(jù)直角三角形可得,,,∴,以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系可得,為線段上的一點,則存在實數(shù)使得.設(shè),,則,且,∴,可得則,即,解得,故所求的最大值為:,故選A.考點:三角形的內(nèi)角和定理,兩角和的正弦公式,基本不等式求解最值.5、C【解析】
由三角形面積公式,結(jié)合所給條件式及余弦定理,即可求得角A.【詳解】中,內(nèi)角,,所對的邊分別為,,則由余弦定理可知而由題意可知,代入可得所以化簡可得因為所以故選:C【點睛】本題考查了三角形面積公式的應(yīng)用,余弦定理邊角轉(zhuǎn)化的應(yīng)用,屬于基礎(chǔ)題.6、C【解析】
帶入計算即可.【詳解】即,選C.【點睛】本題考查向量向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.7、B【解析】
令g(x)=0得f(x)=a,再利用函數(shù)的圖像分析解答得到a的取值范圍.【詳解】令g(x)=0得f(x)=a,函數(shù)f(x)的圖像如圖所示,當(dāng)直線y=a在x軸和直線x=1之間時,函數(shù)y=f(x)的圖像與直線y=a有四個零點,所以0<a<1.故選:B【點睛】本題主要考查函數(shù)的圖像和性質(zhì),考查函數(shù)的零點問題,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.8、C【解析】
由正弦定理結(jié)合已知,可以得到的關(guān)系,再根據(jù)余弦定理結(jié)合,可以求出的值,再利用三角形面積公式求出三角形的面積即可.【詳解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面積為,故本題選C.【點睛】本題考查了正弦定理、余弦定理、三角形面積公式,考查了數(shù)學(xué)運算能力.9、A【解析】
分別求出基本事件的總數(shù)和點數(shù)之和為奇數(shù)的事件總數(shù),再由古典概型的概率計算公式求解.【詳解】同時拋擲兩枚骰子,總共有種情況,朝上的點數(shù)之和為奇數(shù)的情況有種,則所求概率為.故選:A.【點睛】本題考查古典概型概率的求法,屬于基礎(chǔ)題.10、A【解析】
利用正弦定理得出的外接圓直徑,并利用正弦定理化邊為角,利用三角形內(nèi)角和關(guān)系以及兩角差正弦公式、配角公式化簡,最后利用正弦函數(shù)性質(zhì)可得出答案.【詳解】中,,,則,,其中由于,所以,所以最大值為.故選A.【點睛】本題考查正弦定理以及兩角差正弦公式、配角公式,考查基本分析計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
利用同角三角函數(shù)的基本關(guān)系即可求解.【詳解】由為鈍角,且,所以,所以.故答案為:【點睛】本題考查了同角三角函數(shù)的基本關(guān)系,同時考查了象限角的三角函數(shù)的符號,屬于基礎(chǔ)題.12、①③④⑤【解析】
設(shè)出幾何體的邊長,根據(jù)正六邊形的性質(zhì),線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關(guān)知識,對五個結(jié)論逐一分析,由此得出正確結(jié)論的序號.【詳解】設(shè)正六邊形長為,則.根據(jù)正六邊形的幾何性質(zhì)可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【點睛】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.13、【解析】
由題意利用兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運算法則,求得的值.【詳解】由題意,向量與平行,所以,解得.故答案為.【點睛】本題主要考查了兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運算,著重考查了推理與計算能力,屬于基礎(chǔ)題.14、-1【解析】
,,,由經(jīng)過向量運算得,知點在以為圓心,1為半徑的圓上,這樣,只要最小,就可化簡.【詳解】如圖,,則,設(shè)是中點,則,∵,∴,即,,記,則點在以為圓心,1為半徑的圓上,記,,注意到,因此當(dāng)與反向時,最小,∴.∴最小值為-1.故答案為-1.【點睛】本題考查平面向量的數(shù)量積,解題關(guān)鍵是由已知得出點軌跡(讓表示的有向線段的起點都是原點)是圓,然后分析出只有最小時,才可能最?。畯亩玫浇忸}方法.15、28【解析】試題分析:由等差數(shù)列的前n項和公式,把等價轉(zhuǎn)化為所以,然后求得a值.考點:極限及其運算16、【解析】
利用在方向上的射影數(shù)量為2可得:,即可整理得:,問題得解.【詳解】因為在方向上的射影數(shù)量為2,所以,整理得:又,為單位向量,所以.設(shè)與的夾角,則所以與的夾角是【點睛】本題主要考查了向量射影的概念及方程思想,還考查了平面向量夾角公式應(yīng)用,考查轉(zhuǎn)化能力及計算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)直接由向量的模長公式進行計算.
(2)由向量平行的公式可得,再用余弦的二倍角和正弦的和角公式,然后再轉(zhuǎn)化為的式子,代值即可.【詳解】(1)因為,所以,所以.(2)由得,所以,故.【點睛】本題考查向量求模長和向量的平行的坐標(biāo)公式的利用,以及三角函數(shù)的化簡求值,屬于基礎(chǔ)題.18、(1)證明見詳解;(2).【解析】
(1)由面面垂直可得線面垂直,再推證面面垂直即可;(2)根據(jù)垂直于平面AMO,即可由棱錐的體積公式直接求得體積.【詳解】(1)在中,因為,且O為AB中點,故AB,因為平面VAB平面ABC,且平面VAB平面ABC,因為CO平面ABC,又AB,故CO平面VAB;又CO平面MOC,故平面MOC平面VAB.即證.(2)由(1)可知CO平面VAB,故三棱錐底面MAO上的高為,又因為分別為的中點,故故.故三棱錐的體積為.【點睛】本題考查由線面垂直推證面面垂直,以及三棱錐體積的求解,屬基礎(chǔ)題.19、(1),;(2);(3)1【解析】
(1)根據(jù)等差數(shù)列、等比數(shù)列的通項公式即可求解;(2)根據(jù)奇函數(shù)的定義得出,化簡得,解方程可得(3)將化成的形式,依題意有,從而得到,因為當(dāng)時,函數(shù)取得最小值,所以,兩式相減即可求解.【詳解】(1)由等差數(shù)列、等比數(shù)列的通項公式可得,;(2)因為,所以即,所以又由,得(3)記,則,其中;因為的圖像關(guān)于點對稱,所以①因為當(dāng)時,函數(shù)取得最小值,所以②②-①得,因為,當(dāng),時,取得最小值為0【點睛】本題主要考查了等差數(shù)列、等比數(shù)列的通項公式的求法、三角函數(shù)的化簡以及正弦型函數(shù)圖像的性質(zhì),考查較全面,屬于難題.20、(1)(2)【解析】試題分析:(1)根據(jù)題知,由向量的數(shù)量積公式進行運算即可,注意,在去括號的向量運算過程中可采用多項式的運算方法;(2)根據(jù)向量數(shù)量積公式,可先求出的值,又,從而可求出的值.試題解析:(1)==(2)21、(1)和;(2)【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度貨運司機勞動合同模板(含績效考核)
- 二零二五年度學(xué)校教師學(xué)生國際交流與合作聘用合同3篇
- 二零二五年度信息技術(shù)產(chǎn)品軟件售后服務(wù)合同書模板2篇
- 2025年度個人法律咨詢委托書范本4篇
- 二零二五年度廚房電氣設(shè)備安裝與維護承包協(xié)議4篇
- 2025版實習(xí)合同模板:實習(xí)期間解約與補償3篇
- 二零二五版舊機動車交易車輛售后配件供應(yīng)合同3篇
- 2025版實習(xí)期員工勞動合同-實習(xí)期間合同解除與續(xù)簽3篇
- 珠海科技學(xué)院《賈平凹文學(xué)創(chuàng)作研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度商業(yè)寫字樓租賃合同樣本
- 運動技能學(xué)習(xí)與控制課件第十一章運動技能的練習(xí)
- 蟲洞書簡全套8本
- 射頻在疼痛治療中的應(yīng)用
- 四年級數(shù)學(xué)豎式計算100道文檔
- “新零售”模式下生鮮電商的營銷策略研究-以盒馬鮮生為例
- 項痹病辨證施護
- 職業(yè)安全健康工作總結(jié)(2篇)
- 懷化市數(shù)字經(jīng)濟產(chǎn)業(yè)發(fā)展概況及未來投資可行性研究報告
- 07FD02 防空地下室電氣設(shè)備安裝
- 教師高中化學(xué)大單元教學(xué)培訓(xùn)心得體會
- 彈簧分離問題經(jīng)典題目
評論
0/150
提交評論