版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省渭南市大荔縣同州中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若直線l:ax+by=1(a>0,b>0)平分圓x2+y2﹣x﹣2y=0,則的最小值為()A. B.2 C. D.2.已知向量,且,則與的夾角為()A. B. C. D.3.以下給出了4個(gè)命題:(1)兩個(gè)長(zhǎng)度相等的向量一定相等;(2)相等的向量起點(diǎn)必相同;(3)若,且,則;(4)若向量的模小于的模,則.其中正確命題的個(gè)數(shù)共有()A.3個(gè) B.2個(gè) C.1個(gè) D.0個(gè)4.若,滿足不等式組,則的最小值為()A.-5 B.-4 C.-3 D.-25.已知等差數(shù)列的公差為2,前項(xiàng)和為,且,則的值為A.11 B.12 C.13 D.146.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.7.已知,,,若,則等于()A. B. C. D.8.在直角中,三條邊恰好為三個(gè)連續(xù)的自然數(shù),以三個(gè)頂點(diǎn)為圓心的扇形的半徑為1,若在中隨機(jī)地選取個(gè)點(diǎn),其中有個(gè)點(diǎn)正好在扇形里面,則用隨機(jī)模擬的方法得到的圓周率的近似值為()A. B. C. D.9.已知扇形圓心角為,面積為,則扇形的弧長(zhǎng)等于()A. B. C. D.10.向量,,,滿足條件.,則A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.△ABC中,,,則=_____.12.如圖,以為直徑的圓中,,在圓上,,于,于,,記,,的面積和為,則的最大值為_(kāi)_____.13.給出下列四個(gè)命題:①正切函數(shù)在定義域內(nèi)是增函數(shù);②若函數(shù),則對(duì)任意的實(shí)數(shù)都有;③函數(shù)的最小正周期是;④與的圖象相同.以上四個(gè)命題中正確的有_________(填寫(xiě)所有正確命題的序號(hào))14.化簡(jiǎn):.15.已知,,那么的值是________.16.函數(shù),的值域是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知,是實(shí)常數(shù).(1)當(dāng)時(shí),判斷函數(shù)的奇偶性,并給出證明;(2)若是奇函數(shù),不等式有解,求的取值范圍.18.已知數(shù)列中,.(1)求證:是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(2)已知:數(shù)列,滿足①求數(shù)列的前項(xiàng)和;②記集合若集合中含有個(gè)元素,求實(shí)數(shù)的取值范圍.19.愛(ài)心超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份每天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:最高氣溫天數(shù)216362574(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的頻率;(2)當(dāng)六月份有一天這種酸奶的進(jìn)貨量為450瓶時(shí),求這一天銷售這種酸奶的平均利潤(rùn)(單位:元)20.?dāng)?shù)列中,,.(1)求證:數(shù)列為等差數(shù)列,求數(shù)列的通項(xiàng)公式;(2)若數(shù)列的前項(xiàng)和為,求證:.21.已知公差不為0的等差數(shù)列的前項(xiàng)和為,,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
求得圓心,代入直線的方程,然后利用基本不等式求得的最小值.【詳解】圓的圓心為,由于直線平分圓,故圓心在直線上,即,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故選:C【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查利用基本不等式求最小值.2、D【解析】
直接由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】設(shè)與的夾角為,由,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的數(shù)量積公式.3、D【解析】
利用向量的概念性質(zhì)和向量的數(shù)量積對(duì)每一個(gè)命題逐一分析判斷得解.【詳解】(1)兩個(gè)長(zhǎng)度相等的向量不一定相等,因?yàn)樗鼈兛赡芊较虿煌?,所以該命題是錯(cuò)誤的;(2)相等的向量起點(diǎn)不一定相同,只要它們方向相同長(zhǎng)度相等就是相等向量,所以該命題是錯(cuò)誤的;(3)若,且,則是錯(cuò)誤的,舉一個(gè)反例,如,不一定相等,所以該命題是錯(cuò)誤的;(4)若向量的模小于的模,則,是錯(cuò)誤的,因?yàn)橄蛄坎荒鼙容^大小,因?yàn)橄蛄考扔写笮∮钟蟹较?,故該命題不正確.故選:D【點(diǎn)睛】本題主要考查向量的概念和數(shù)量積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、A【解析】
畫(huà)出不等式組表示的平面區(qū)域,平移目標(biāo)函數(shù),找出最優(yōu)解,求出的最小值.【詳解】畫(huà)出,滿足不等式組表示的平面區(qū)域,如圖所示平移目標(biāo)函數(shù)知,當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),取得最小值,由得,即點(diǎn)坐標(biāo)為∴的最小值為,故選A.【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.5、C【解析】
利用等差數(shù)列通項(xiàng)公式及前n項(xiàng)和公式,即可得到結(jié)果.【詳解】∵等差數(shù)列的公差為2,且,∴∴∴.故選:C【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,考查計(jì)算能力,屬于基礎(chǔ)題.6、A【解析】
列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點(diǎn)睛】本題考查算法與程序框圖的計(jì)算,解題時(shí)要根據(jù)算法框圖計(jì)算出算法的每一步,考查分析問(wèn)題和計(jì)算能力,屬于中等題.7、A【解析】
根據(jù)向量的坐標(biāo)運(yùn)算法則,依據(jù)題意列出等式求解.【詳解】由題知:,,,因?yàn)?所以,故,故選:A.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.8、B【解析】由題直角中,三條邊恰好為三個(gè)連續(xù)的自然數(shù),設(shè)三邊為解得以三個(gè)頂點(diǎn)為圓心的扇形的面積和為由題故選B.9、C【解析】
根據(jù)扇形面積公式得到半徑,再計(jì)算扇形弧長(zhǎng).【詳解】扇形弧長(zhǎng)故答案選C【點(diǎn)睛】本題考查了扇形的面積和弧長(zhǎng)公式,解出扇形半徑是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力.10、C【解析】向量,則,故解得.故答案為:C。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:三角形中,,由,得又,所以有正弦定理得即即A為銳角,由得,因此考點(diǎn):正余弦定理12、【解析】
可設(shè),表示出S關(guān)于的函數(shù),從而轉(zhuǎn)化為三角函數(shù)的最大值問(wèn)題.【詳解】設(shè),則,,,當(dāng)時(shí),.【點(diǎn)睛】本題主要考查函數(shù)的實(shí)際運(yùn)用,三角函數(shù)最值問(wèn)題,意在考查學(xué)生的劃歸能力,分析能力和數(shù)學(xué)建模能力.13、②③④【解析】
①利用反例證明命題錯(cuò)誤;②先判斷為其中一條對(duì)稱軸;③通過(guò)恒等變換化成;④對(duì)兩個(gè)解析式進(jìn)行變形,得到定義域和對(duì)應(yīng)關(guān)系均一樣.【詳解】對(duì)①,當(dāng),顯然,但,所以,不符合增函數(shù)的定義,故①錯(cuò);對(duì)②,當(dāng)時(shí),,所以為的一條對(duì)稱軸,當(dāng)取,取時(shí),顯然兩個(gè)數(shù)關(guān)于直線對(duì)稱,所以,即成立,故②對(duì);對(duì)③,,,故③對(duì);對(duì)④,因?yàn)?,,兩個(gè)函數(shù)的定義域都是,解析式均為,所以函數(shù)圖象相同,故④對(duì).綜上所述,故填:②③④.【點(diǎn)睛】本題對(duì)三角函數(shù)的定義域、值域、單調(diào)性、對(duì)稱性、周期性等知識(shí)進(jìn)行綜合考查,求解過(guò)程中要注意數(shù)形結(jié)合思想的應(yīng)用.14、0【解析】原式=+=-sinα+sinα=0.15、【解析】
首先根據(jù)題中條件求出角,然后代入即可.【詳解】由題知,,所以,故.故答案為:.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)值,屬于基礎(chǔ)題.16、【解析】
利用正切函數(shù)在單調(diào)遞增,求得的值域?yàn)?【詳解】因?yàn)楹瘮?shù)在單調(diào)遞增,所以,,故函數(shù)的值域?yàn)?【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性求值域,注意定義域、值域要寫(xiě)成區(qū)間的形式.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)為非奇非偶函數(shù),證明見(jiàn)解析;(2).【解析】
(1)當(dāng)時(shí),,計(jì)算不相等,也不互為相反數(shù),可得出結(jié)論;(2)由奇函數(shù)的定義,求出的值,證明在上單調(diào)遞減,有解,化為有解,求出的值域,即可求解.【詳解】(1)為非奇非偶函數(shù).當(dāng)時(shí),,,,因?yàn)椋圆皇桥己瘮?shù);又因?yàn)?,所以不是奇函?shù),即為非奇非偶函數(shù).(2)因?yàn)槭瞧婧瘮?shù),所以恒成立,即對(duì)恒成立,化簡(jiǎn)整理得,即.下用定義法研究的單調(diào)性;設(shè)任意,且,,所以函數(shù)在上單調(diào)遞減,因?yàn)橛薪?,且函?shù)為奇函數(shù),所以有解,又因?yàn)楹瘮?shù)在上單調(diào)遞減,所以有解,,的值域?yàn)椋?,即.【點(diǎn)睛】本題考查函數(shù)性質(zhì)的綜合應(yīng)用,涉及到函數(shù)的奇偶性求參數(shù),單調(diào)性證明及應(yīng)用,以及求函數(shù)的值域,屬于較難題.18、(1)證明見(jiàn)解析,(2)①②【解析】
(1)計(jì)算得到:得證.(2)①計(jì)算的通項(xiàng)公式為,利用錯(cuò)位相減法得到.②將代入集合M,化簡(jiǎn)并分離參數(shù)得,確定數(shù)列的單調(diào)性,根據(jù)集合中含有個(gè)元素得到答案.【詳解】(1),為等比數(shù)列,其中首項(xiàng),公比為.所以,.(2)①數(shù)列的通項(xiàng)公式為①②①-②化簡(jiǎn)后得.②將代入得化簡(jiǎn)并分離參數(shù)得,設(shè),則易知由于中含有個(gè)元素,所以實(shí)數(shù)要小于等于第5大的數(shù),且比第6大的數(shù)大.,,綜上所述.【點(diǎn)睛】本題考查了數(shù)列的證明,數(shù)列的通項(xiàng)公式,錯(cuò)位相減法,數(shù)列的單調(diào)性,綜合性強(qiáng)計(jì)算量大,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19、(1);(2)460元.【解析】
(1)根據(jù)表中的數(shù)據(jù),求得最高氣溫位于區(qū)間和最高氣溫低于20的天數(shù),利用古典概型的概率計(jì)算公式,即可求得相應(yīng)的概率;(2)分別求出溫度不低于、溫度在,以及溫度低于時(shí)的利潤(rùn)及相應(yīng)的概率,即可求解這一天銷售這種酸奶的平均利潤(rùn),得到答案.【詳解】(1)根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間,需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,得到最高氣溫位于區(qū)間和最高氣溫低于20的天數(shù)為,所以六月份這種酸奶一天的需求量不超過(guò)300瓶的頻率.(2)當(dāng)溫度大于等于時(shí),需求量為500瓶,利潤(rùn)為:元,當(dāng)溫度在時(shí),需求量為300瓶,利潤(rùn)為:元,當(dāng)溫度低于時(shí),需求量為200瓶,利潤(rùn)為:元,平均利潤(rùn)為【點(diǎn)睛】本題主要考查了古典概型及其概率的計(jì)算,以及概率的實(shí)際應(yīng)用,其中解答中認(rèn)真審題,熟練應(yīng)用古典概型及其概率的計(jì)算公式,以及平均利潤(rùn)的計(jì)算方法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.20、(1);(2)見(jiàn)解析【解析】
(1)結(jié)合,構(gòu)造數(shù)列,證明得到該數(shù)列為等差數(shù)列,結(jié)合等差通項(xiàng)數(shù)列計(jì)算方法,即可.(2)運(yùn)用裂項(xiàng)相消法,即可.【詳解】(1)由,(即),可得,所以,所以數(shù)列是以為首項(xiàng),以2為公差的等差數(shù)列,所以,即.(2),所以,因?yàn)椋?【點(diǎn)睛】本道題考查了等差數(shù)列通項(xiàng)計(jì)算方法和裂項(xiàng)相消法,難度一般.21、(1)(2)【解析】
試題分析:(1)由已知條件,利用等差數(shù)列的前n項(xiàng)和公式和通項(xiàng)公式及等比數(shù)列的性質(zhì)列出方程組,求出等差數(shù)列的首項(xiàng)和公差,由此能求出數(shù)列{an}的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 入廠打工合同范例
- 聚合物合成課程設(shè)計(jì)
- 新車分期租賃合同范例
- 定制窗戶配件合同范例
- 全科醫(yī)學(xué)導(dǎo)論模擬習(xí)題(含參考答案)
- 農(nóng)村水源地租賃合同范例
- 保姆雇傭合同范例
- 電車電池質(zhì)保合同范例
- 2025年西雙版納道路運(yùn)輸從業(yè)資格考試系統(tǒng)
- 果園管護(hù)合同范例
- 學(xué)校食堂應(yīng)對(duì)臨時(shí)增員的預(yù)案
- 康復(fù)治療技術(shù)歷年真題單選題100道及答案
- 北京郵電大學(xué)《自然語(yǔ)言處理基礎(chǔ)》2022-2023學(xué)年期末試卷
- 畢業(yè)答辯基于4P理論研究ZARA快時(shí)尚品牌在國(guó)內(nèi)的研究策略李丹
- 漢字文化解密學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 醫(yī)生給病人免責(zé)協(xié)議書(shū)(2篇)
- 滬科版2023~2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)預(yù)測(cè)卷(二)(含答案)
- 第二章 田徑-短跑途中跑技術(shù) 教案 2023-2024學(xué)年人教版初中體育與健康七年級(jí)全一冊(cè)
- 空運(yùn)陸運(yùn)操作崗位招聘面試題及回答建議(某大型國(guó)企)2024年
- 《元旦新氣象夢(mèng)想再起航》主題班會(huì)
- 2024-2030年中國(guó)集中供熱行業(yè)供需平衡與投資運(yùn)行模式規(guī)劃研究報(bào)告
評(píng)論
0/150
提交評(píng)論