2024屆江蘇省揚州市江都區(qū)大橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2024屆江蘇省揚州市江都區(qū)大橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2024屆江蘇省揚州市江都區(qū)大橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2024屆江蘇省揚州市江都區(qū)大橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2024屆江蘇省揚州市江都區(qū)大橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省揚州市江都區(qū)大橋中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,那么a,b,,的大小關(guān)系是()A. B.C. D.2.設(shè)的內(nèi)角,,所對的邊分別為,,,且,,面積的最大值為()A.6 B.8 C.7 D.93.設(shè)集合,則元素個數(shù)為()A.1 B.2 C.3 D.44.若{an}是等差數(shù)列,且a1+a4+a7=45,a2+a5+a8=39,則a3+a6+a9=()A.39 B.20 C.19.5 D.335.設(shè)是等比數(shù)列,有下列四個命題:①是等比數(shù)列;②是等比數(shù)列;③是等比數(shù)列;④是等差數(shù)列.其中正確命題的個數(shù)是()A. B. C. D.6.若,,與的夾角為,則的值是()A. B. C. D.7.直線(是參數(shù))被圓截得的弦長等于()A. B. C. D.8.從裝有4個紅球和3個白球的袋中任取2個球,那么下列事件中,是對立事件的是()A.至少有1個白球;都是紅球 B.至少有1個白球;至少有1個紅球C.恰好有1個白球;恰好有2個白球 D.至少有1個白球;都是白球9.函數(shù)的最大值為()A. B. C. D.10.若數(shù)列對任意滿足,下面給出關(guān)于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù)的最小值為,則的取值范圍是___________.12.已知數(shù)列的通項公式為是數(shù)列的前n項和,則______.13.設(shè)a>1,b>1.若關(guān)于x,y的方程組無解,則的取值范圍是.14.已知正方體的棱長為,點、分別為、的中點,則點到平面的距離為______.15.在平面直角坐標(biāo)系中,點,,若直線上存在點使得,則實數(shù)的取值范圍是_____.16.如圖,在中,,,,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.若在定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)有“和一點”.(1)函數(shù)是否有“和一點”?請說明理由;(2)若函數(shù)有“和一點”,求實數(shù)的取值范圍;(3)求證:有“和一點”.18.已知向量,的夾角為,且,.(1)求;(2)求.19.已知,,函數(shù).(1)求的最小正周期;(2)求的單調(diào)增區(qū)間.20.使用支付寶和微信支付已經(jīng)成為廣大消費者最主要的消費支付方式,某超市通過統(tǒng)計發(fā)現(xiàn)一周內(nèi)超市每天的凈利潤(萬元)與每天使用支付寶和微信支付的人數(shù)(千人)具有線性相關(guān)關(guān)系,并得到最近一周的7組數(shù)據(jù)如下表,并依此作為決策依據(jù).(1)作出散點圖,并求出回歸方程(,精確到);(2)超市為了刺激周一消費,擬在周一開展使用支付寶和微信支付隨機抽獎活動,總獎金7萬元.根據(jù)市場調(diào)查,抽獎活動能使使用支付寶和微信支付消費人數(shù)增加7千人,試決策超市是否有必要開展抽獎活動?(3)超市管理層決定:從周一到周日,若第二天的凈利潤比前一天增長超過兩成,則對全體員工進行獎勵,在(Ⅱ)的決策下,求全體員工連續(xù)兩天獲得獎勵的概率.參考數(shù)據(jù):,,,.參考公式:,,.21.如圖四邊形ABCD為菱形,G為AC與BD交點,BE⊥平面(I)證明:平面AEC⊥平面BED;(II)若∠ABC=120°,AE⊥EC,三棱錐E-ACD的體積為

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

直接用作差法比較它們的大小得解.【詳解】;;.故.故選:D【點睛】本題主要考查了作差法比較實數(shù)的大小,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.2、D【解析】

由已知利用基本不等式求得的最大值,根據(jù)三角形的面積公式,即可求解,得到答案.【詳解】由題意,利用基本不等式可得,即,解得,當(dāng)且僅當(dāng)時等號成立,又因為,所以,當(dāng)且僅當(dāng)時等號成立,故三角形的面積的最大值為,故選D.【點睛】本題主要考查了基本不等式的應(yīng)用,以及三角形的面積公式的應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于基礎(chǔ)題.3、B【解析】

計算圓心到直線的距離,可知直線與圓相交,可得結(jié)果.【詳解】由,圓心為,半徑為1所以可知圓心到直線的距離為所以直線與圓相交,故可知元素個數(shù)為2故選:B【點睛】本題主要考查直線與圓的位置關(guān)系判斷,屬基礎(chǔ)題.4、D【解析】

根據(jù)等差數(shù)列的通項公式,縱向觀察三個式子的項的腳標(biāo)關(guān)系,可巧解.【詳解】由等差數(shù)列得:所以同理:故選D.【點睛】本題考查等差數(shù)列通項公式,關(guān)鍵縱向觀察出腳標(biāo)的特殊關(guān)系更妙,屬于中檔題.5、C【解析】

設(shè),得到,,,再利用舉反例的方式排除③【詳解】設(shè),則:,故是首項為,公比為的等比數(shù)列,①正確,故是首項為,公比為的等比數(shù)列,②正確取,則,不是等比數(shù)列,③錯誤.,故是首項為,公差為的等差數(shù)列,④正確故選:C【點睛】本題考查了等差數(shù)列,等比數(shù)列的判斷,找出反例可以快速的排除選項,簡化運算,是解題的關(guān)鍵.6、C【解析】

由題意可得||?||?cos,,再利用二倍角公式求得結(jié)果.【詳解】由題意可得||?||?cos,2sin15°4cos15°cos30°=2sin60°,故選:C.【點睛】本題主要考查兩個向量的數(shù)量積的定義,二倍角公式的應(yīng)用屬于基礎(chǔ)題.7、D【解析】

先消參數(shù)得直線普通方程,再根據(jù)垂徑定理得弦長.【詳解】直線(是參數(shù)),消去參數(shù)化為普通方程:.圓心到直線的距離,∴直線被圓截得的弦長.故選D.【點睛】本題考查參數(shù)方程化普通方程以及垂徑定理,考查基本分析求解能力,屬基礎(chǔ)題.8、A【解析】

根據(jù)對立事件的定義判斷.【詳解】從裝有4個紅球和3個白球的袋內(nèi)任取2個球,在A中,“至少有1個白球”與“都是紅球”不能同時發(fā)生且必有一個事件會發(fā)生,是對立事件.在B中,“至少有1個白球”與“至少有1個紅球”可以同時發(fā)生,不是互斥事件.在C中,“恰好有1個白球”與“恰好有2個白球”是互斥事件,但不是對立事件.在D中,“至少有1個白球”與“都是白球”不是互斥事件.故選:A.9、D【解析】

令,根據(jù)正弦型函數(shù)的性質(zhì)可得,那么,可將問題轉(zhuǎn)化為二次函數(shù)在定區(qū)間上的最值問題.【詳解】由題意,令,可得,,∴,∴原函數(shù)的值域與函數(shù)的值域相同.∵函數(shù)圖象的對稱軸為,,取得最大值為.故選:D.【點睛】本題考查三角函數(shù)中的恒等變換、函數(shù)的值域,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意換元法的使用,將問題轉(zhuǎn)化為二次函數(shù)的值域問題.10、C【解析】

由已知可得an﹣an﹣1=2,或an=2an﹣1,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案.【詳解】∵數(shù)列{an}對任意n≥2(n∈N)滿足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差為2的等差數(shù)列,正確;②{an}可以是公比為2的等比數(shù)列,正確;③若{an}既是等差又是等比數(shù)列,即此時公差為0,公比為1,由①②得,③錯誤;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,當(dāng)數(shù)列為:1,3,6,8,16……得{an}既不是等差也不是等比數(shù)列,故④正確;故選C.【點睛】本題以命題的真假判斷與應(yīng)用為載體,考查了等差,等比數(shù)列的相關(guān)內(nèi)容,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

確定函數(shù)的單調(diào)性,由單調(diào)性確定最小值.【詳解】由題意在上是增函數(shù),在上是減函數(shù),又,∴,,故答案為.【點睛】本題考查分段函數(shù)的單調(diào)性.由單調(diào)性確定最小值,12、【解析】

對數(shù)列的通項公式進行整理,再求其前項和,利用對數(shù)運算規(guī)則,可得到,從而求出,得到答案.【詳解】所以所以.故答案為:.【點睛】本題考查對數(shù)運算公式,由數(shù)列的通項求前項和,數(shù)列的極限,屬于中檔題.13、【解析】試題分析:方程組無解等價于直線與直線平行,所以且.又,為正數(shù),所以(),即取值范圍是.考點:方程組的思想以及基本不等式的應(yīng)用.14、【解析】

作出圖形,取的中點,連接,證明平面,可知點平面的距離等于點到平面的距離,然后利用等體積法計算出點到平面的距離,即為所求.【詳解】如下圖所示,取的中點,連接,在正方體中,且,、分別為、的中點,且,所以,四邊形為平行四邊形,且,又,,平面,平面,平面,則點平面的距離等于點到平面的距離,的面積為,在正方體中,平面,且平面,,易知三棱錐的體積為.的面積為.設(shè)點到平面的距離為,則,.故答案為:.【點睛】本題考查點到平面的距離的求法,是中檔題,解題時要認(rèn)真審題,注意等體積法的合理運用.15、.【解析】

設(shè)由,求出點軌跡方程,可判斷其軌跡為圓,點又在直線,轉(zhuǎn)化為直線與圓有公共點,只需圓心到直線的距離小于半徑,得到關(guān)于的不等式,求解,即可得出結(jié)論.【詳解】設(shè),,,,整理得,又點在直線,直線與圓共公共點,圓心到直線的距離,即.故答案為:.【點睛】本題考查求曲線的軌跡方程,考查直線與圓的位置關(guān)系,屬于中檔題.16、【解析】

先將轉(zhuǎn)化為和為基底的兩組向量,然后通過數(shù)量積即可得到答案.【詳解】,.【點睛】本題主要考查向量的基本運算,數(shù)量積運算,意在考查學(xué)生的分析能力和計算能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)不存在;(2)a>﹣2;(3)見解析【解析】

(1)解方程即可判斷;(2)由題轉(zhuǎn)化為2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分離參數(shù)a=2x﹣2求值域即可求解;(3)由題意判斷方程cos(x+1)=cosx+cos1是否有解即可.【詳解】(1)若函數(shù)有“和一點”,則不合題意故不存在(2)若函數(shù)f(x)=2x+a+2x有“和一點”.則方程f(x+1)=f(x)+f(1)有解,即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,即a=2x﹣2有解,故a>﹣2;(3)證明:令f(x+1)=f(x)+f(1),即cos(x+1)=cosx+cos1,即cosxcos1﹣sinxsin1﹣cosx=cos1,即(cos1﹣1)cosx﹣sinxsin1=cos1,故存在θ,故cos(x+θ)=cos1,即cos(x+θ)=cos1,即cos(x+θ),∵cos21﹣(2﹣2cos1)=cos21+2cos1﹣2<cos22cos22<0,故01,故方程cos(x+1)=cosx+cos1有解,即f(x)=cosx函數(shù)有“和一點”.【點睛】本題考查了新定義及分類討論的思想應(yīng)用,同時考查了三角函數(shù)的化簡與應(yīng)用,轉(zhuǎn)化為有解問題是關(guān)鍵,是中檔題18、(1)1;(2)【解析】

(1)利用向量數(shù)量積的定義求解;(2)先求模長的平方,再進行開方可得.【詳解】(1)?=||||cos60°=2×1×=1;(2)|+|2=(+)2=+2?+=4+2×1+1=7.所以|+|=.【點睛】本題主要考查平面向量數(shù)量積的定義及向量模長的求解,一般地,求解向量模長時,先把模長平方,化為數(shù)量積運算進行求解.19、(1)(2)【解析】

(1)直接利用向量的數(shù)量積的應(yīng)用和三角函數(shù)關(guān)系式的恒等變變換,求出三角函數(shù)的關(guān)系式,進一步求出函數(shù)的最小正周期,即可求得答案.(2)利用(1)的函數(shù)關(guān)系式和整體思想求出函數(shù)的單調(diào)區(qū)間,即可求得答案.【詳解】(1),,函數(shù).(2)由(1)得:令:解得:函數(shù)的單調(diào)遞增區(qū)間為:【點睛】本題考查了向量數(shù)量積和三角函數(shù)求周期,及其求正弦函數(shù)單調(diào)區(qū)間,解題關(guān)鍵是掌握正弦函數(shù)周期求法和整體法求正弦函數(shù)單調(diào)區(qū)間的求法,考查了分析能力和計算能力,屬于中檔題.20、(1);(2)見解析;(3)【解析】

(1)通過表格描點即可,先計算和,然后通過公式計算出線性回歸方程;(2)先計算活動開展后使用支付寶和微信支付的人數(shù)為(千人),代入(1)問得到結(jié)果;(3)先判斷周一到周日全體員工只有周二、周三、周四、周日獲得獎勵,從而確定基本事件,再找出連續(xù)兩天獲得獎勵的基本事件,故可計算出全體員工連續(xù)兩天獲得獎勵的概率.【詳解】(1)散點圖如圖所示,關(guān)于的回歸方程為(2)活動開展后使用支付寶和微信支付的人數(shù)為(千人)由(1)得,當(dāng)時,此時超市的凈利潤約為,故超市有必要開展抽獎活動(3)由于,,,,,,故從周一到周日全體員工只有周二、周三、周四、周日獲得獎勵從周一到周日中連續(xù)兩天,基本事件為(周一、周二),(周二、周三),(周三、周四),(周四、周五),(周五、周六),(周六、周日),共6個基本事件連續(xù)兩天獲得獎勵的基本事件為(周二、周三),(周三、周四),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論