版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省福州市格致中學高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的大致圖象是()A. B.C. D.2.函數(shù)的圖像的一條對稱軸是()A. B. C. D.3.產(chǎn)能利用率是指實際產(chǎn)出與生產(chǎn)能力的比率,工業(yè)產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營狀況的重要指標.下圖為國家統(tǒng)計局發(fā)布的2015年至2018年第2季度我國工業(yè)產(chǎn)能利用率的折線圖.在統(tǒng)計學中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.據(jù)上述信息,下列結論中正確的是()A.2015年第三季度環(huán)比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度環(huán)比有所提高4.三角形的一個角為60°,夾這個角的兩邊之比為,則這個三角形的最大角的正弦值為()A. B. C. D.5.若滿足,且的最小值為,則實數(shù)的值為()A. B. C. D.6.下列表達式正確的是()①,②若,則③若,則④若,則A.①② B.②③ C.①③ D.③④7.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,≤)的圖象如下,則點的坐標是()A.(,) B.(,)C.(,) D.(,)8.某學校隨機抽取20個班,調(diào)查各班中有網(wǎng)上購物經(jīng)歷的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示.以組距為5將數(shù)據(jù)分組成[0,5),[5,10),…,[30,35),[35,40]時,所作的頻率分布直方圖是()A. B.C. D.9.將函數(shù)的圖象向右平移個的單位長度,再將所得到的函數(shù)圖象上所有點的橫坐標伸長為原來的倍(縱坐標不變),則所得到的圖象的函數(shù)解析式為()A. B.C. D.10.已知的模為1,且在方向上的投影為,則與的夾角為()A.30° B.60° C.120° D.150°二、填空題:本大題共6小題,每小題5分,共30分。11.若向量與的夾角為,與的夾角為,則______.12.無窮等比數(shù)列的首項是某個正整數(shù),公比為單位分數(shù)(即形如:的分數(shù),為正整數(shù)),若該數(shù)列的各項和為3,則________.13.關于函數(shù),下列命題:①若存在,有時,成立;②在區(qū)間上是單調(diào)遞增;③函數(shù)的圖象關于點成中心對稱圖象;④將函數(shù)的圖象向左平移個單位后將與的圖象重合.其中正確的命題序號__________14.在數(shù)列中,若,(),則________15.在中,角所對的邊為,若,且的外接圓半徑為,則________.16.函數(shù)的值域是________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關系式;(2)從該銷售公司隨機選取一名推銷員,對他(或她)過去兩年的銷售情況進行統(tǒng)計,得到如下統(tǒng)計表:月銷售產(chǎn)品件數(shù)300400500600700次數(shù)24954把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.18.已知,,分別為內(nèi)角,,的對邊,且.(1)求角;(2)若,,求邊上的高.19.如圖,等邊所在的平面與菱形所在的平面垂直,分別是的中點.(1)求證:平面;(2)若,,求三棱錐的體積20.甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.(1)分別求出兩人得分的平均數(shù)與方差;(2)根據(jù)圖和上面算得的結果,對兩人的訓練成績作出評價.21.一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.(Ⅰ)請按字母F,G,H標記在正方體相應地頂點處(不需要說明理由)(Ⅱ)判斷平面BEG與平面ACH的位置關系.并說明你的結論.(Ⅲ)證明:直線DF平面BEG
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
去掉絕對值將函數(shù)化為分段函數(shù)的形式后可得其圖象的大體形狀.【詳解】由題意得,所以其圖象的大體形狀如選項C所示.故選C.【點睛】解答本題的關鍵是去掉函數(shù)中的絕對值,將函數(shù)化為基本函數(shù)后再求解,屬于基礎題.2、C【解析】對稱軸穿過曲線的最高點或最低點,把代入后得到,因而對稱軸為,選.3、C【解析】
根據(jù)同比和環(huán)比的定義比較兩期數(shù)據(jù)得出結論.【詳解】解:2015年第二季度利用率為74.3%,第三季度利用率為74.0%,故2015年第三季度環(huán)比有所下降,故A錯誤;2015年第一季度利用率為74.2%,2016年第一季度利用率為72.9%,故2016年第一季度同比有所下降,故B錯誤;2016年底三季度利用率率為73.2%,2017年第三季度利用率為76.8%,故2017年第三季度同比有所提高,故C正確;2017年第四季度利用率為78%,2018年第一季度利用率為76.5%,故2018年第一季度環(huán)比有所下降,故D錯誤.故選C.【點睛】本題考查了新定義的理解,圖表認知,考查分析問題解決問題的能力,屬于基礎題.4、B【解析】
由余弦定理,可得第三邊的長度,再由大角對大邊可得最大角,然后由正弦定理可得最大角的正弦值.【詳解】解:三角形的一個角為,夾這個角的兩邊之比為,設夾這個角的兩邊分別為和,則由余弦定理,可得第三邊的長度為,三角形的最大邊為,對應的角最大,記為,則由正弦定理可得,故選:B.【點睛】本題主要考查正弦定理和余弦定理的應用,考查了計算能力,屬于基礎題.5、B【解析】
首先畫出滿足條件的平面區(qū)域,然后根據(jù)目標函數(shù)取最小值找出最優(yōu)解,把最優(yōu)解點代入目標函數(shù)即可求出的值.【詳解】畫出滿足條件的平面區(qū)域,如圖所示:,由,解得:,由得:,顯然直線過時,z最小,∴,解得:,故選B.【點睛】本題主要考查簡單的線性規(guī)劃,已知目標函數(shù)最值求參數(shù)的問題,屬于??碱}型.6、D【解析】
根據(jù)基本不等式、不等式的性質(zhì)即可【詳解】對于①,.當,即時取,而,.即①不成立。對于②若,則,若,顯然不成立。對于③若,則,則正確。對于④若,則,則,正確。所以選擇D【點睛】本題主要考查了基本不等式以及不等式的性質(zhì),基本不等式一定要滿足一正二定三相等。屬于中等題。7、C【解析】
由函數(shù)f(x)的部分圖象求得A、T、ω和φ的值即可.【詳解】由函數(shù)f(x)=Asin(ωx+φ)的部分圖象知,A=2,T=2×(4﹣1)=6,∴ω,又x=1時,y=2,∴φ2kπ,k∈Z;∴φ2kπ,k∈Z;又0<φ,∴φ,∴點P(,).故選C.【點睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應的特殊點求.8、A【解析】由于頻率分布直方圖的組距為5,去掉C、D,又[0,5),[5,10)兩組各一人,去掉B,應選A.9、A【解析】
由題意利用函數(shù)的圖象變換法則,即可得出結論?!驹斀狻繉⒑瘮?shù)的圖象向右平移個的單位長度,可得的圖象,再將所得到的函數(shù)圖象上所有點的橫坐標伸長為原來的2倍(縱坐標不變),則所得到的圖象的函數(shù)解析式為,故選.【點睛】本題主要考查函數(shù)的圖象變換法則,注意對的影響。10、A【解析】
根據(jù)投影公式,直接得到結果.【詳解】,.故選A.【點睛】本題考查了投影公式,屬于簡單題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)向量平行四邊形法則作出圖形,然后在三角形中利用正弦定理分析.【詳解】如圖所示,,,所以在中有:,則,故.【點睛】本題考查向量的平行四邊形法則的運用,難度一般.在運用平行四邊形法則時候,可以適當將其拆分為三角形,利用解三角形中的一些方法去解決問題.12、【解析】
利用無窮等比數(shù)列的各項和,可求得,從而,利用首項是某個自然數(shù),可求,進而可求出.【詳解】無窮等比數(shù)列各項和為3,,是個自然數(shù),則,.故答案為:【點睛】本題主要考查了等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.13、①③【解析】
根據(jù)題意,由于,根據(jù)函數(shù)周期為,可知①、若存在,有時,成立;正確,對于②、在區(qū)間上是單調(diào)遞減;因此錯誤,對于③、,函數(shù)的圖象關于點成中心對稱圖象,成立.對于④、將函數(shù)的圖象向左平移個單位后得到,與的圖象重合錯誤,故答案為①③考點:命題的真假點評:主要是考查了三角函數(shù)的性質(zhì)的運用,屬于基礎題.14、【解析】
由題意,得到數(shù)列表示首項為1,公差為2的等差數(shù)列,結合等差數(shù)列的通項公式,即可求解.【詳解】由題意,數(shù)列中,滿足,(),即(),所以數(shù)列表示首項為1,公差為2的等差數(shù)列,所以.故答案為:【點睛】本題主要考查了等差數(shù)列的定義和通項公式的應用,其中解答中熟記等差數(shù)列的定義,合理利用數(shù)列的通項公式求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、或.【解析】
利用正弦定理求出的值,結合角的取值范圍得出角的值.【詳解】由正弦定理可得,所以,,,或,故答案為或.【點睛】本題考查正弦定理的應用,在利用正弦值求角時,除了找出銳角還要注意相應的補角是否滿足題意,考查計算能力,屬于基礎題.16、【解析】
利用函數(shù)的單調(diào)性,結合函數(shù)的定義域求解即可.【詳解】因為函數(shù)的定義域是,,函數(shù)是增函數(shù),所以函數(shù)的最小值為:,最大值為:.所以函數(shù)的值域為:,.故答案為,.【點睛】本題考查函數(shù)的單調(diào)性以及函數(shù)的值域的求法,考查計算能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)方案一概率為,方案二概率為.【解析】
(1)利用一次函數(shù)和分段函數(shù)分別表示方案一、方案二的月工資與的關系式;(2)分別計算方案一、方案二的推銷員的月工資超過11090元的概率值.【詳解】解:(1)方案一:,;方案二:月工資為,所以.(2)方案一中推銷員的月工資超過11090元,則,解得,所以方案一中推銷員的月工資超過11090元的概率為;方案二中推銷員的月工資超過11090元,則,解得,所以方案二中推銷員的月工資超過11090元的概率為.【點睛】本題考查了分段函數(shù)與應用問題,也考查了利用頻率估計概率的應用問題,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于基礎題.18、(1);(2)【解析】
(1)利用正弦定理化簡已知條件,利用三角形內(nèi)角和定理以及兩角和的正弦公式化簡,由此求得,進而求得的大小.(2)利用正弦定理求得,進而求得的大小,由此求得的值,根據(jù)求得邊上的高.【詳解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴設邊上的高為,則有【點睛】本小題主要考查利用正弦定理進行邊角互化,考查利用正弦定理解三角形,考查三角恒等變換,考查特殊角的三角函數(shù)值,屬于中檔題.19、(1)證明見解析;(2).【解析】
解法一:(1)取中點,連接,,證出,利用線面平行的判定定理即可證出.(2)取中點,連接,利用面面垂直的性質(zhì)定理可得平面,過作于,可得平面,由即可求解.解法二:(1)取中點,連接,證出平面,平面,利用面面平行的判定定理可證出平面平面,再利用面面平行的性質(zhì)定理即可證出.(2)取中點,連接,根據(jù)面面垂直的性質(zhì)定理可得平面,再由,利用三棱錐的體積公式即可求解.【詳解】解法一:(1)取中點,連接,.因為分別是的中點,所以,且,所以四邊形為平行四邊形,所以,因為平面,平面,所以平面.(2)取中點,連接,則,且,因為平面平面,平面平面,平面,所以平面同理,在平面內(nèi),過作于,則平面,且,因為為的中點,所以,所以,.解法二:(1)取中點,連接,因為為的中點,所以,因為平面,平面,所以平面.因為,且,所以四邊形為平行四邊形,故,因為平面,平面,所以平面,因為,平面,所以平面平面,因為平面,所以平面.(2)取中點,連接,依題意,為等邊三角形,所以,且.因為平面平面,平面平面,平面,所以平面.因為是的中點,所以,所以.【點睛】本小題主要考查幾何體的體積及、直線與直線、直線與平面、平面與平面的位置關系等基礎知識,考查空間想象能力、推理論證能力、運算求解能力,考查數(shù)形結合思想、化歸與轉(zhuǎn)化思想等.20、(1)答案見解析;(2)答案見解析.【解析】試題分析:(1)由圖象可得甲、乙兩人五次測試的成績分別為,甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.根據(jù)平均數(shù),方差的公式代入計算得解(2)由可知乙的成績較穩(wěn)定.從折線圖看,甲的成績基本呈上升狀態(tài),而乙的成績上下波動,可知甲的成績在不斷提高,而乙的成績則無明顯提高.試題解析:(1)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國室內(nèi)門行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2024-2030年中國地波那非酮項目可行性研究報告
- 2024-2030年中國雙耳環(huán)行業(yè)發(fā)展狀況規(guī)劃分析報告
- 眉山職業(yè)技術學院《系統(tǒng)仿真技術》2023-2024學年第一學期期末試卷
- 2024年版風力發(fā)電項目施工合同詳細條款
- 馬鞍山職業(yè)技術學院《納米科學技術導論》2023-2024學年第一學期期末試卷
- 呂梁學院《藥物化學(I)》2023-2024學年第一學期期末試卷
- 2024年建筑行業(yè)工程承包協(xié)議更新版版B版
- 2021-2022學年云南省文山壯族苗族自治州高一上學期期中語文試題
- 洛陽商業(yè)職業(yè)學院《小學數(shù)學教學設計與技能訓練》2023-2024學年第一學期期末試卷
- 2022年度尾礦庫安全風險辨識及分級管控表
- 職業(yè)學院食品藥品監(jiān)督管理專業(yè)核心課《企業(yè)管理》課程標準
- 投標項目進度計劃
- 關于發(fā)展鄉(xiāng)村產(chǎn)業(yè)的建議
- 登泰山記-教學課件
- 2024版水電費繳費協(xié)議范本
- 北師大版四年級數(shù)學上冊第五單元《方向與位置》(大單元教學設計)
- 2024年西安交大少年班選拔考試語文試卷試題(含答案詳解)
- 2024年云南省昆明滇中新區(qū)公開招聘20人歷年重點基礎提升難、易點模擬試題(共500題)附帶答案詳解
- 2024年國開思政課《馬克思主義基本原理》大作業(yè)、形考及學習行為表現(xiàn)試題及答案請理論聯(lián)系實際談一談你對實踐的理解
- 2024屆浙江高考英語寫作分類訓練:建議信(含答案)
評論
0/150
提交評論