




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市第八中學2024屆高一下數(shù)學期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某學校隨機抽取20個班,調查各班中有網上購物經歷的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示.以組距為5將數(shù)據(jù)分組成[0,5),[5,10),…,[30,35),[35,40]時,所作的頻率分布直方圖是()A. B.C. D.2.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位3.已知角的終邊經過點,則()A. B. C. D.4.向量,,若,則實數(shù)的值為A. B. C. D.5.已知內角的對邊分別為,滿足且,則△ABC()A.一定是等腰非等邊三角形 B.一定是等邊三角形C.一定是直角三角形 D.可能是銳角三角形,也可能是鈍角三角形6.已知,,是三條不同的直線,,是兩個不同的平面,則下列命題正確的是A.若,,,,,則B.若,,,,則C.若,,,,,則D.若,,,則7.已知數(shù)列的前4項依次為,1,,,則該數(shù)列的一個通項公式可以是()A. B.C. D.8.在等差數(shù)列中,已知=2,=16,則為()A.8 B.128 C.28 D.149.一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是A.兩次都中靶B.至少有一次中靶C.兩次都不中靶D.只有一次中靶10.在中,是的中點,,,相交于點,若,,則()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.甲船在島的正南處,,甲船以每小時的速度向正北方向航行,同時乙船自出發(fā)以每小時的速度向北偏東的方向駛去,甲、乙兩船相距最近的距離是_____.12.不等式的解集為________13.已知數(shù)列滿足,若,則的所有可能值的和為______;14.方程在區(qū)間的解為_______.15.函數(shù)的最小正周期為.16.兩圓,相切,則實數(shù)=______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在平面直角坐標系xOy中,已知圓C:x2⑴若圓E的半徑為2,圓E與x軸相切且與圓C外切,求圓E的標準方程;⑵若過原點O的直線l與圓C相交于A,B兩點,且OA=AB,求直線l的方程.18.將函數(shù)的圖像向右平移1個單位,得到函數(shù)的圖像.(1)求的單調遞增區(qū)間;(3)設為坐標原點,直線與函數(shù)的圖像自左至右相交于點,,,求的值.19.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.(Ⅰ)求證:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.20.已知向量.(1)若向量,且,求的坐標;(2)若向量與互相垂直,求實數(shù)的值.21.已知函數(shù).(1)求函數(shù)的單調遞增區(qū)間;(2)當時,求函數(shù)的最大值和最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由于頻率分布直方圖的組距為5,去掉C、D,又[0,5),[5,10)兩組各一人,去掉B,應選A.2、D【解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數(shù)圖象平移的應用問題,屬于基礎題.3、C【解析】
首先根據(jù)題意求出,再根據(jù)正弦函數(shù)的定義即可求出的值.【詳解】,.故選:C【點睛】本題主要考查正弦函數(shù)的定義,屬于簡單題.4、C【解析】
利用向量平行的坐標表示,即可求出.【詳解】向量,,,即解得.故選.【點睛】本題主要考查向量平行的坐標表示.5、B【解析】
根據(jù)正弦定理可得和,然后對進行分類討論,結合三角形的性質,即可得到結果.【詳解】在中,因為,所以,又,所以,又當時,因為,所以時等邊三角形;當時,因為,所以不存在,綜上:一定是等邊三角形.故選:B.【點睛】本題主要考查了正弦定理的應用,解題過程中注意兩解得情況,一般需要檢驗,本題屬于基礎題.6、D【解析】
逐一分析選項,得到答案.【詳解】A.根據(jù)條件可知,若,不能推出;B.若,就不能推出;C.條件中沒有,所以不能推出;D.因為,,所以,因為,所以.【點睛】本題考查了面面平行的判斷,屬于基礎題型,需要具有空間想象能力,以及邏輯推理能力.7、A【解析】
根據(jù)各選擇項求出數(shù)列的首項,第二項,用排除法確定.【詳解】可用排除法,由數(shù)列項的正負可排除B,D,再看項的絕對值,在C中不合題意,排除C,只有A.可選.故選:A.【點睛】本題考查數(shù)列的通項公式,已知數(shù)列的前幾項,選擇一個通項公式,比較方便,可以利用通項公式求出數(shù)列的前幾項,把不合的排除即得.8、D【解析】
將已知條件轉化為的形式列方程組,解方程組求得,進而求得的值.【詳解】依題意,解得,故.故選:D.【點睛】本小題主要考查等差數(shù)列通項的基本量計算,屬于基礎題.9、A【解析】
利用對立事件、互斥事件的定義直接求解.【詳解】一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是兩次都中靶.故選:A.【點睛】本題考查互事件的判斷,是中檔題,解題時要認真審題,注意對立事件、互斥事件的定義的合理運用.10、D【解析】由題意知,所以,解得,所以,故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)條件畫出示意圖,在三角形中利用余弦定理求解相距的距離,利用二次函數(shù)對稱軸及可求解出最值.【詳解】假設經過小時兩船相距最近,甲、乙分別行至,,如圖所示,可知,,,.當小時時甲、乙兩船相距最近,最近距離為.【點睛】本題考查解三角形的實際應用,難度較易.關鍵是通過題意將示意圖畫出來,然后將待求量用未知數(shù)表示,最后利用函數(shù)思想求最值.12、【解析】因為所以,即不等式的解集為.13、36【解析】
根據(jù)條件得到的遞推關系,從而判斷出的類型求解出可能的通項公式,即可計算出的所有可能值,并完成求和.【詳解】因為,所以或,當時,是等差數(shù)列,,所以;當時,是等比數(shù)列,,所以,所以的所有可能值之和為:.故答案為:.【點睛】本題考查等差和等比數(shù)列的判斷以及求數(shù)列中項的值,難度一般.已知數(shù)列滿足(為常數(shù)),則是公差為的等差數(shù)列;已知數(shù)列滿足,則是公比為的等比數(shù)列.14、或【解析】
由題意求得,利用反三角函數(shù)求出方程在區(qū)間的解.【詳解】解:,得,,或,;方程在區(qū)間的解為:或.故答案為:或.【點睛】本題考查了三角函數(shù)方程的解法與應用問題,是基礎題.15、【解析】試題分析:,所以函數(shù)的周期等于考點:1.二倍角降冪公式;2.三角函數(shù)的周期.16、0,±2【解析】
根據(jù)題意,由圓的標準方程分析兩圓的圓心與半徑,分兩圓外切與內切兩種情況討論,求出a的值,綜合即可得答案.【詳解】根據(jù)題意:圓的圓心為(0,0),半徑為1,圓的圓心為(﹣4,a),半徑為5,若兩圓相切,分2種情況討論:當兩圓外切時,有(﹣4)2+a2=(1+5)2,解可得a=±2,當兩圓內切時,有(﹣4)2+a2=(1﹣5)2,解可得a=0,綜合可得:實數(shù)a的值為0或±2;故答案為0或±2.【點睛】本題考查圓與圓的位置關系,關鍵是掌握圓與圓的位置關系的判定方法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(x+3)2+(y-2)2【解析】
(1)設出圓E的標準方程為(x-a)2+(y-b)2=r2,由圓E與x軸相切,可得b=r,由圓E與圓C外切,可得兩圓心距等于半徑之和,由此解出(2)法一:設出A點坐標為(x0,y0),根據(jù)OA=AB,可得到點B坐標,把A、B兩點坐標代入圓法二:設AB的中點為M,連結CM,CA,設出直線l的方程,由題求出CM的長,利用點到直線的距離即可得求出k值,從而得到直線l的方程【詳解】⑴設圓E的標準方程為(x-a)2+(y-b)2=r2因為圓E的半徑為2,與x軸相切,所以b=2因為圓E與圓C外切所以EC=3,即a由①②解得a=±3,b=2故圓E的標準方程為(x+3)2+⑵方法一;設A(因為OA=AB,所以A為OB的中點,從而B(2因為A,B都在圓C上所以x解得x0=-故直線l的方程為:y=±方法二:設AB的中點為M,連結CM,CA設AM=t,CM=d因為OA=AB,所以OM=3t在RtΔACM中,d2在RtΔOCM中,d2由③④解得d=由題可知直線l的斜率一定存在,設直線l的方程為y=kx則d=2k故直線l的方程為y=±【點睛】本題考查圓的標準方程與直線方程,解題關鍵是設出方程,找出關系式,屬于中檔題。18、(1)();(2)【解析】
(1)通過“左加右減”可得到函數(shù)的解析式,從而求得的單調遞增區(qū)間;(2)先求得直線與軸的交點為,則,又,關于點對稱,所以,從而.【詳解】(1)令,,的單調遞增區(qū)間是()(2)直線與軸的交點為,即為函數(shù)的對稱中心,且,關于點對稱,【點睛】本題主要考查三角函數(shù)平移,增減區(qū)間的求解,對稱中心的性質及向量的基本運算,意在考查學生的分析能力和計算能力.19、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結論;(Ⅱ)由幾何體的空間結構特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;(Ⅲ)由題意,利用平行四邊形的性質和線面平行的判定定理即可找到滿足題意的點.【詳解】(Ⅰ)證明:因為平面,所以;因為底面是菱形,所以;因為,平面,所以平面.(Ⅱ)證明:因為底面是菱形且,所以為正三角形,所以,因為,所以;因為平面,平面,所以;因為所以平面,平面,所以平面平面.(Ⅲ)存在點為中點時,滿足平面;理由如下:分別取的中點,連接,在三角形中,且;在菱形中,為中點,所以且,所以且,即四邊形為平行四邊形,所以;又平面,平面,所以平面.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問題等知識,意在考查學生的轉化能力和計算求解能力.20、(1)或(2)【解析】
(1)因為,所以可以設求出坐標,根據(jù)模長,可以得到參數(shù)的方程.(2)由于已知條件可以計算出與坐標(含有參數(shù))而兩向量垂直,可以得到關于的方程,完成本題.【詳解】(1)法一:設,則,所以解得所以或法二:設,因為,,所以,因為,所以解得或,所以或(2)因為向量與互相垂直所以,即而,,所以,因此,解得【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 育嬰師在職能力評估試題及答案
- 激光工程師的職業(yè)定位考題試題及答案
- 考中取勝的初級會計師試題及答案
- 現(xiàn)代圖書管理員素質模型試題及答案
- 服裝開發(fā)考試題及答案
- 畜牧經營管理試題及答案
- 網絡規(guī)劃設計師考試的個人經驗分享及試題及答案
- 藥品不良反應處理技巧試題及答案
- 激光技術創(chuàng)新實例分析試題及答案
- 藥劑配方設計試題及答案
- 風光儲儲能項目PCS艙、電池艙吊裝方案
- 小學語文中國詩詞飛花令集錦
- 甲狀腺結節(jié)射頻消融治療
- NC63全產品培訓課件-合同管理
- 2024年中信銀行唐山分行招聘管理單位遴選500模擬題附帶答案詳解
- 天車技能培訓
- 租車位安裝充電樁合同范本
- 七年級上冊地理填圖訓練
- 幼兒園孩子食物中毒培訓
- 人教版(2024)英語七年級上冊單詞表
- 建筑工程cad課程說課
評論
0/150
提交評論