四川省眉山車城中學2024屆高一下數(shù)學期末監(jiān)測試題含解析_第1頁
四川省眉山車城中學2024屆高一下數(shù)學期末監(jiān)測試題含解析_第2頁
四川省眉山車城中學2024屆高一下數(shù)學期末監(jiān)測試題含解析_第3頁
四川省眉山車城中學2024屆高一下數(shù)學期末監(jiān)測試題含解析_第4頁
四川省眉山車城中學2024屆高一下數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省眉山車城中學2024屆高一下數(shù)學期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果,那么下列不等式錯誤的是()A. B.C. D.2.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:廣告費用(萬元)

4

2

3

5

銷售額(萬元)

49

26

39

54

根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為A.63.6萬元 B.65.5萬元 C.67.7萬元 D.72.0萬元3.角的終邊過點,則等于()A. B. C. D.4.在邊長為的正方形內(nèi)有一個半徑為1的圓,向正方形中隨機扔一粒豆子(忽略大小,視為質(zhì)點),若它落在該圓內(nèi)的概率為,則用隨機模擬的方法得到的圓周率的近似值為()A. B. C. D.5.在平行四邊形中,,,則點的坐標為()A. B. C. D.6.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.7.若,且,則下列不等式中正確的是()A. B. C. D.8.空氣質(zhì)量指數(shù)是反映空氣質(zhì)量狀況的指數(shù),指數(shù)值越小,表明空氣質(zhì)量越好,其對應關系如表:指數(shù)值0~5051~100101~150151~200201~300空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染嚴重污染如圖是某市10月1日-20日指數(shù)變化趨勢:下列敘述錯誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上的天數(shù)占C.該市10月的前半個月的空氣質(zhì)量越來越好D.總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好9.奇函數(shù)在上單調(diào)遞減,且,則不等式的解集是().A. B.C. D.10.圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設,且,則的取值范圍是______.12.函數(shù),的反函數(shù)為__________.13.如圖,在△中,三個內(nèi)角、、所對的邊分別為、、,若,,為△外一點,,,則平面四邊形面積的最大值為________14.若數(shù)列滿足(),且,,__.15.已知,則____.16.的值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓,過點的直線與圓相交于不同的兩點,.(1)若,求直線的方程.(2)判斷是否為定值.若是,求出這個定值;若不是,請說明理由.18.某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.(1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內(nèi)的概率.(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:A:所有芒果以10元/千克收購;B:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?19.在平面直角坐標系中,為坐標原點,已知向量,又點,,,.(1)若,且,求向量;(2)若向量與向量共線,常數(shù),求的值域.20.在中,已知,,且AC邊的中點M在y軸上,BC邊的中點N在x軸上,求:頂點C的坐標;

直線MN的方程.21.已知數(shù)列的前項和為,且滿足,().(Ⅰ)求的值,并求數(shù)列的通項公式;(Ⅱ)設數(shù)列的前項和為,求證:().

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

利用不等式的性質(zhì)或比較法對各選項中不等式的正誤進行判斷.【詳解】,,,則,,可得出,因此,A選項錯誤,故選:A.【點睛】本題考查判斷不等式的正誤,常利用不等式的性質(zhì)或比較法來進行判斷,考查推理能力,屬于基礎題.2、B【解析】

試題分析:,∵數(shù)據(jù)的樣本中心點在線性回歸直線上,回歸方程中的為1.4,∴42=1.4×2.5+a,∴=1.1,∴線性回歸方程是y=1.4x+1.1,∴廣告費用為6萬元時銷售額為1.4×6+1.1=3.5考點:線性回歸方程3、B【解析】由三角函數(shù)的定義知,x=-1,y=2,r==,∴sinα==.4、A【解析】

通過幾何概型可得答案.【詳解】由幾何概型可知,則.【點睛】本題主要考查幾何概型的相關計算,難度中等.5、A【解析】

先求,再求,即可求D坐標【詳解】,∴,則D(6,1)故選A【點睛】本題考查向量的坐標運算,熟記運算法則,準確計算是關鍵,是基礎題6、A【解析】

觀察可知,這個幾何體由兩部分構成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積。【詳解】設半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。7、D【解析】

利用不等式的性質(zhì)依次對選項進行判斷?!驹斀狻繉τ贏,當,且異號時,,故A不正確;對于B,當,且都為負數(shù)時,,故B不正確;對于C,取,則,故不正確;對于D,由于,,則,所以,即,故D正確;故答案選D【點睛】本題主要考查不等式的基本性質(zhì),在解決此類選擇題時,可以用特殊值法,依次對選項進行排除。8、C【解析】

根據(jù)所給圖象,結合中位數(shù)的定義、指數(shù)與污染程度的關系以及古典概型概率公式,對四個選項逐一判斷即可.【詳解】對,因為第10天與第11天指數(shù)值都略高100,所以中位數(shù)略高于100,正確;對,中度污染及以上的有第11,13,14,15,17天,共5天占,正確;對,由圖知,前半個月中,前4天的空氣質(zhì)量越來越好,后11天該市的空氣質(zhì)量越來越差,錯誤;對,由圖知,10月上旬大部分指數(shù)在100以下,10月中旬大部分指數(shù)在100以上,所以正確,故選C.【點睛】與實際應用相結合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學模型進行解答.9、A【解析】

因為函數(shù)式奇函數(shù),在上單調(diào)遞減,根據(jù)奇函數(shù)的性質(zhì)得到在上函數(shù)仍是減函數(shù),再根據(jù)可畫出函數(shù)在上的圖像,根據(jù)對稱性畫出在上的圖像.根據(jù)圖像得到的解集是:.故選A.10、D【解析】

根據(jù)圓錐的體積求出底面圓的半徑和高,求出母線長,即可計算圓錐的表面積.【詳解】圓錐的高和底面半徑之比,∴,又圓錐的體積,即,解得;∴,母線長為,則圓錐的表面積為.故選:D.【點睛】本題考查圓錐的體積和表面積公式,考查計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

通過可求得x的取值范圍,接著利用反正弦函數(shù)的定義可得的取值范圍.【詳解】,,即.由反正弦函數(shù)的定義可得,即的取值范圍為.故答案為:.【點睛】本題主要考查余弦函數(shù)的定義域和值域,反正弦函數(shù)的定義,屬于基礎題.12、【解析】

將函數(shù)變形為的形式,然后得到反函數(shù),注意定義域.【詳解】因為,所以,則反函數(shù)為:且.【點睛】本題考查反三角函數(shù)的知識,難度較易.給定定義域的時候,要注意函數(shù)定義域.13、【解析】

根據(jù)題意和正弦定理,化簡得,進而得到,在中,由余弦定理,求得,進而得到,,得出四邊形的面積為,再結合三角函數(shù)的性質(zhì),即可求解.【詳解】由題意,在中,因為,所以,可得,即,所以,所以,又因為,可得,所以,即,因為,所以,在中,,由余弦定理,可得,又因為,所以為等腰直角三角形,所以,又因為,所以四邊形的面積為,當時,四邊形的面積有最大值,最大值為.故答案為:.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應用,其中在解有關三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.14、1【解析】

由數(shù)列滿足,即,得到數(shù)列的奇數(shù)項和偶數(shù)項分別構成公比為的等比數(shù)列,利用等比數(shù)列的極限的求法,即可求解.【詳解】由題意,數(shù)列滿足,即,又由,,所以數(shù)列的奇數(shù)項構成首項為1,公比為,偶數(shù)項構成首項為,公比為的等比數(shù)列,當為奇數(shù)時,可得,當為偶數(shù)時,可得.所以.故答案為:1.【點睛】本題主要考查了等比數(shù)列的定義,以及無窮等比數(shù)列的極限的計算,其中解答中得出數(shù)列的奇數(shù)項和偶數(shù)項分別構成公比為的等比數(shù)列是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、【解析】

由于,則,然后將代入中,化簡即可得結果.【詳解】,,,故答案為.【點睛】本題考查了同角三角函數(shù)的關系,屬于基礎題.同角三角函數(shù)之間的關系包含平方關系與商的關系,平方關系是正弦與余弦值之間的轉(zhuǎn)換,商的關系是正余弦與正切之間的轉(zhuǎn)換.16、【解析】

利用同角三角函數(shù)的基本關系式、二倍角公式,結合根式運算,化簡求得表達式的值.【詳解】依題意,由于,所以故答案為:【點睛】本小題主要考查同角三角函數(shù)的基本關系式、二倍角公式,考查根式運算,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或.(2)是,定值.【解析】

(1)根據(jù)題意設出,再聯(lián)立直線方程和圓的方程,得到,,然后由列式,再將的值代入求解,即可求出;(2)先根據(jù)特殊情況,當直線與軸垂直時,求出,再說明當直線與軸不垂直時,是否成立,即可判斷.【詳解】(1)由已知得不與軸垂直,不妨設,,.聯(lián)立消去得,則有,又,,,解得或.所以,直線的方程為或.(2)當直線與軸垂直時(斜率不存在),,的坐標分別為,,此時.當不與軸垂直時,又由(1),,且,所以.綜上,為定值.【點睛】本題主要考查直線與圓的位置關系的應用,韋達定理的應用,數(shù)量積的坐標表示,以及和圓有關的定值問題的解法的應用,意在考查學生的數(shù)學運算能力,屬于中檔題.18、(1)中位數(shù)為268.75;(2);(3)選B方案【解析】

(1)根據(jù)中位數(shù)左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所以中位數(shù)在內(nèi),設中位數(shù)為,則有,解得.故中位數(shù)為268.75.(2)設質(zhì)量在內(nèi)的4個芒果分別為,,,,質(zhì)量在內(nèi)的2個芒果分別為,.從這6個芒果中選出3個的情況共有,,,,,,,,,,,,,,,,,,,,共計20種,其中恰有一個在內(nèi)的情況有,,,,,,,,,,,,共計12種,因此概率.(3)方案A:元.方案B:由題意得低于250克:元;高于或等于250克元.故總計元,由于,故B方案獲利更多,應選B方案.【點睛】本題主要考查了頻率分布直方圖的用法以及古典概型的方法,同時也考查了根據(jù)樣本估計總體的方法等.屬于中等題型.19、(1)或;(2)當時的值域為.時的值域為.【解析】分析:(1)由已知表示出向量,再根據(jù),且,建立方程組求出,即可求得向量;(2)由已知表示出向量,結合向量與向量共線,常數(shù),建立的表達式,代入,對分類討論,綜合三角函數(shù)和二次函數(shù)的圖象與性質(zhì),即可求出值域.詳解:(1),∵,且,∴,,解得,時,;時,.∴向量或.(2),∵向量與向量共線,常數(shù),∴,∴.①當即時,當時,取得最大值,時,取得最小值,此時函數(shù)的值域為.②當即時,當時,取得最大值,時,取得最小值,此時函數(shù)的值域為.綜上所述,當時的值域為.時的值域為.點睛:本題考查了向量的坐標運算、向量垂直和共線的定理、模的計算、三角函數(shù)的值域等問題,考查了分類討論方法、推理與計算能力.20、(1);(2).【解析】試題分析:(1)邊AC的中點M在y軸上,由中點公式得,A,C兩點的橫坐標和的平均數(shù)為1,同理,B,C兩點的縱坐標和的平均數(shù)為1.構造方程易得C點的坐標.(2)根據(jù)C點的坐標,結合中點公式,我們可求出M,N兩點的坐標,代入兩點式即可求出直線MN的方程.解:(1)設點C(x,y),∵邊AC的中點M在y軸上得=1,∵邊BC的中點N在x軸上得=1,解得x=﹣5,y=﹣2.故所求點C的坐標是(﹣5,﹣2).(2)點M的坐標是(1,﹣),點N的坐標是(1,1),直線MN的方程是=,即5x﹣2y﹣5=1.點評:在求直線方程時,應先選擇適當?shù)闹本€方程的形式,并注意各種形式的適用條件,用斜截式及點斜式時,直線的斜率必須存在,而兩點式不能表示與坐標軸垂直的直線,截距式不能表示與坐標軸垂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論