版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省常州市教育學會學業(yè)水平監(jiān)測(2024年高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.不等式x+5(x-1)A.[-3,1C.[122.如圖是某個正方體的平面展開圖,,是兩條側面對角線,則在該正方體中,與()A.互相平行 B.異面且互相垂直 C.異面且夾角為 D.相交且夾角為3.下列函數(shù)中,既是偶函數(shù)又在上是單調遞減的是A. B. C. D.4.給出函數(shù)為常數(shù),且,,無論a取何值,函數(shù)恒過定點P,則P的坐標是A. B. C. D.5.在中,若,則此三角形為()三角形.A.等腰 B.直角 C.等腰直角 D.等腰或直角6.已知數(shù)列是公比為2的等比數(shù)列,滿足,設等差數(shù)列的前項和為,若,則()A.34B.39C.51D.687.在等比數(shù)列{an}中,a2=8,a5=64,,則公比q為()A.2 B.3 C.4 D.88.如圖所示,在中,點D是邊的中點,則向量()A. B.C. D.9.棱長為2的正四面體的表面積是()A. B.4 C. D.1610.點,,直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.若復數(shù)滿足(為虛數(shù)單位),則__________.12.將邊長為2的正沿邊上的高折成直二面角,則三棱錐的外接球的表面積為.13.在公差為的等差數(shù)列中,有性質:,根據(jù)上述性質,相應地在公比為等比數(shù)列中,有性質:____________.14.在中,為邊中點,且,,則______.15.已知數(shù)列中,其前項和為,,則_____.16.已知三棱錐(如圖所示),平面,,,,則此三棱錐的外接球的表面積為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知.(1)求;(2)求向量與的夾角的余弦值.18.設向量,,.(1)若,求實數(shù)的值;(2)求在方向上的投影.19.已知數(shù)列滿足:,,.(1)求證:數(shù)列為等差數(shù)列,并求出數(shù)列的通項公式;(2)記(),用數(shù)學歸納法證明:,20.如圖,某小區(qū)有一塊半徑為米的半圓形空地,開發(fā)商計劃在該空地上征地建一個矩形的花壇和一個等腰三角形的水池EDC,其中為圓心,在圓的直徑上,在半圓周上.(1)設,征地面積為,求的表達式,并寫出定義域;(2)當滿足取得最大值時,建造效果最美觀.試求的最大值,以及相應角的值.21.如圖所示,函數(shù)的圖象與軸交于點,且該函數(shù)的最小正周期為.(1)求和的值;(2)已知點,點是該函數(shù)圖象上一點,點是的中點,當時,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:x+5(x-1)2≥2?x+5≥2(x-1)2且x≠1考點:分式不等式解法2、D【解析】
先將平面展開圖還原成正方體,再判斷求解.【詳解】將平面展開圖還原成正方體如圖所示,則B,C兩點重合,所以與相交,連接,則為正三角形,所以與的夾角為.故選D.【點睛】本題主要考查空間直線的位置關系,意在考查學生對該知識的理解掌握水平和分析推理能力.3、B【解析】
可先確定奇偶性,再確定單調性.【詳解】由題意A、B、C三個函數(shù)都是偶函數(shù),D不是偶函數(shù)也不是奇函數(shù),排除D,A中在上不單調,C中在是遞增,只有B中函數(shù)在上遞減.故選B.【點睛】本題考查函數(shù)的奇偶性與單調性,解題時可分別確定函數(shù)的這兩個性質.4、D【解析】試題分析:因為恒過定點,所以函數(shù)恒過定點.故選D.考點:指數(shù)函數(shù)的性質.5、B【解析】
由條件結合正弦定理即可得到,由此可得三角形的形狀.【詳解】由于在中,有,根據(jù)正弦定理可得;所以此三角形為直角三角形;、故答案選B【點睛】本題主要考查正弦定理的應用,屬于基礎題.6、D【解析】由數(shù)列是公比為的等比數(shù)列,且滿足,得,所以,所以,設數(shù)列的公差為,則,故選D.7、A【解析】,選A.8、D【解析】
根據(jù)向量線性運算法則可求得結果.【詳解】為中點本題正確選項:【點睛】本題考查根據(jù)向量線性運算,用基底表示向量的問題,屬于常考題型.9、C【解析】
根據(jù)題意求出一個面的面積,然后乘以4即可得到正四面體的表面積.【詳解】每個面的面積為,∴正四面體的表面積為.【點睛】本題考查正四面體的表面積,正四面體四個面均為正三角形.10、B【解析】
根據(jù),在直線異側或其中一點在直線上列不等式求解即可.【詳解】因為直線與線段相交,所以,,在直線異側或其中一點在直線上,所以,解得或,故選B.【點睛】本題主要考查點與直線的位置關系,考查了一元二次不等式的解法,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:由復數(shù)的除法運算可得解.詳解:由,得.故答案為:.點睛:本題考查了復數(shù)的除法運算,屬于基礎題.12、【解析】
解:根據(jù)題意可知三棱錐B﹣ACD的三條側棱BD、DC、DA兩兩互相垂直,所以它的外接球就是它擴展為長方體的外接球,∵長方體的對角線的長為:,∴球的直徑是,半徑為,∴三棱錐B﹣ACD的外接球的表面積為:4π5π.故答案為5π考點:外接球.13、【解析】
根據(jù)題中條件,類比等差數(shù)列的性質,可直接得出結果.【詳解】因為在公差為的等差數(shù)列中,有性質:,類比等差數(shù)列的性質,可得:在公比為等比數(shù)列中,故答案為:【點睛】本題主要考查類比推理,只需根據(jù)題中條件,結合等差數(shù)列與等比數(shù)列的特征,即可得出結果,屬于??碱}型.14、0【解析】
根據(jù)向量,,取模平方相減得到答案.【詳解】兩個等式平方相減得到:故答案為0【點睛】本題考查了向量的加減,模長,意在考查學生的計算能力.15、1【解析】
本題主要考查了已知數(shù)列的通項式求前和,根據(jù)題目分奇數(shù)項和偶數(shù)項直接求即可?!驹斀狻?,則.故答案為:1.【點睛】本題主要考查了給出數(shù)列的通項式求前項和以及極限。求數(shù)列的前常用的方法有錯位相減、分組求和、裂項相消等。本題主要利用了分組求和的方法。屬于基礎題。16、【解析】
由于圖形特殊,可將圖形補成長方體,從而求長方體的外接球表面積即為所求.【詳解】,,,,平面,將三棱錐補形為如圖的長方體,則長方體的對角線,則【點睛】本題主要考查外接球的相關計算,將圖形補成長方體是解決本題的關鍵,意在考查學生的劃歸能力及空間想象能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意求出,即可求解;(2)向量與的夾角的余弦值為:代入求值即可得解.【詳解】(1)由題:,解得:(2)向量與的夾角的余弦值為:【點睛】此題考查平面向量數(shù)量積的運算,根據(jù)運算法則求解數(shù)量積和模長,求解向量夾角的余弦值.18、(1);(2).【解析】
(1)計算出的坐標,然后利用共線向量的坐標表示列出等式求出實數(shù)的值;(2)求出和,從而可得出在方向上的投影為.【詳解】(1),,,,,,解得;(2),,在方向上的投影.【點睛】本題考查平面向量的坐標運算,考查共線向量的坐標運算以及投影的計算,在解題時要弄清楚這些知識點的定義以及坐標運算律,考查計算能力,屬于中等題.19、(1)證明見解析,;(2)見解析【解析】
(1)定義法證明:;(2)采用數(shù)學歸納法直接證明(注意步驟).【詳解】由可知:,則有,即,所以為等差數(shù)列,且首相為,公差,所以,故;(2),當時,成立;假設當時,不等式成立則:;當時,,因為,所以,則,故時不等式成立,綜上可知:.【點睛】數(shù)學歸納法的一般步驟:(1)命題成立;(2)假設命題成立;(3)證明命題成立(一定要借助假設,否則不能稱之為數(shù)學歸納法).20、(1)(2)最大值為,此時【解析】
(1)連接,在中,求出,進而求出面積以及角的范圍;(2)令,再求出的范圍,轉化為二次函數(shù)即可求出最大值,以及相應角的值.【詳解】(1)連接,在中,,(2),令,因為,所以,所以因為在上單調遞增,所以時有最大值為,此時【點睛】本題主要考查三角函數(shù)與實際應用相結合,最終轉化為二次函數(shù)進行求解,這類問題的特點是通過現(xiàn)實生活的事例考查解決問題的能力、仔細理解題,才能將實
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告合同制作合同模板
- 辦公窗簾購銷合同范例
- 商用空調合同范例
- 彩鋼瓦工程合同范例
- 商戶亮牌經營合同模板
- 廢舊廠房拆遷合同模板
- 工廠承包經營合同范例
- 工會面油采購合同模板
- 土地租賃公司轉讓合同模板
- 寵物繁殖寄養(yǎng)合同范例
- 大麥營養(yǎng)特點及利用
- 五年級數(shù)學上冊蘇教版《小數(shù)乘整數(shù)》課件(區(qū)級公開課)
- 船舶制圖基本知識課件
- 812天津濱海新區(qū)爆炸事故事故的案例分析的報告共課件
- 城市的輻射功能 課件 高中地理人教版(2019)選擇性必修第二冊
- 建筑工程危險源辨識風險評價表
- 微課《鄉(xiāng)愁》全國一等獎教學設計
- 九年級主題班會《心理健康》課件
- 三年級上冊美術課件-4前前后后 |人教新課標 (共20張PPT)
- 《城市生態(tài)學》考試復習題庫(含答案)
- 小學飲食營養(yǎng)與健康班會課件
評論
0/150
提交評論