




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省樂(lè)陵市重點(diǎn)達(dá)標(biāo)名校2024年中考試題猜想數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知點(diǎn)P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結(jié)論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n2.下列圖形是軸對(duì)稱圖形的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)3.下列幾何體中,三視圖有兩個(gè)相同而另一個(gè)不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)4.下面的圖形是軸對(duì)稱圖形,又是中心對(duì)稱圖形的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a(chǎn)≥ B.a(chǎn)> C.a(chǎn)≤ D.a(chǎn)>6.如果a﹣b=5,那么代數(shù)式(﹣2)?的值是()A.﹣ B. C.﹣5 D.57.如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.8.截至2010年“費(fèi)爾茲獎(jiǎng)”得主中最年輕的8位數(shù)學(xué)家獲獎(jiǎng)時(shí)的年齡分別為29,28,29,31,31,31,29,31,則由年齡組成的這組數(shù)據(jù)的中位數(shù)是()A.28 B.29 C.30 D.319.一元二次方程x2+x﹣2=0的根的情況是()A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根C.只有一個(gè)實(shí)數(shù)根 D.沒(méi)有實(shí)數(shù)根10.如圖,內(nèi)接于,若,則A. B. C. D.11.為了解當(dāng)?shù)貧鉁刈兓闆r,某研究小組記錄了寒假期間連續(xù)6天的最高氣溫,結(jié)果如下(單位:﹣6,﹣1,x,2,﹣1,1.若這組數(shù)據(jù)的中位數(shù)是﹣1,則下列結(jié)論錯(cuò)誤的是()A.方差是8 B.極差是9 C.眾數(shù)是﹣1 D.平均數(shù)是﹣112.如圖是一個(gè)由4個(gè)相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,菱形OABC的頂點(diǎn)O是原點(diǎn),頂點(diǎn)B在y軸上,菱形的兩條對(duì)角線的長(zhǎng)分別是6和4,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C,則k的值為.14.同一個(gè)圓的內(nèi)接正方形和正三角形的邊心距的比為_(kāi)____.15.如圖,已知點(diǎn)A是一次函數(shù)y=x(x≥0)圖象上一點(diǎn),過(guò)點(diǎn)A作x軸的垂線l,B是l上一點(diǎn)(B在A上方),在AB的右側(cè)以AB為斜邊作等腰直角三角形ABC,反比例函數(shù)y=(x>0)的圖象過(guò)點(diǎn)B,C,若△OAB的面積為5,則△ABC的面積是________.16.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個(gè)數(shù)中的其中某一個(gè),若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個(gè)人玩這個(gè)游戲,得出他們”心有靈犀”的概率為_(kāi)____.17.閱讀材料:設(shè)=(x1,y1),=(x2,y2),如果∥,則x1?y2=x2?y1.根據(jù)該材料填空:已知=(2,3),=(4,m),且∥,則m=_____.18.如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),DE∥AC,若S△BDE:S△CDE=1:3,則BE:BC的值為_(kāi)________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)某校在一次大課間活動(dòng)中,采用了四鐘活動(dòng)形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動(dòng),小杰對(duì)同學(xué)們選用的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖,回答下列問(wèn)題:(1)這次調(diào)查中,一共調(diào)查了多少名學(xué)生?(2)求出扇形統(tǒng)計(jì)圖中“B:跳繩”所對(duì)扇形的圓心角的度數(shù),并補(bǔ)全條形圖;(3)若該校有2000名學(xué)生,請(qǐng)估計(jì)選擇“A:跑步”的學(xué)生約有多少人?20.(6分)為迎接“全民閱讀日“系列活動(dòng),某校圍繞學(xué)生日人均閱讀時(shí)間這一問(wèn)題,對(duì)八年級(jí)學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:(1)本次共抽查了八年級(jí)學(xué)生多少人;(2)請(qǐng)直接將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)在扇形統(tǒng)計(jì)圖中,1?1.5小時(shí)對(duì)應(yīng)的圓心角是多少度;(4)根據(jù)本次抽樣調(diào)查,估計(jì)全市50000名八年級(jí)學(xué)生日人均閱讀時(shí)間狀況,其中在0.5?1.5小時(shí)的有多少人?21.(6分)已知△ABC中,D為AB邊上任意一點(diǎn),DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如圖1所示,當(dāng)α=60°時(shí),求證:△DCE是等邊三角形;(2)如圖2所示,當(dāng)α=45°時(shí),求證:=;(3)如圖3所示,當(dāng)α為任意銳角時(shí),請(qǐng)直接寫出線段CE與DE的數(shù)量關(guān)系:=_____.22.(8分)如圖,已知平行四邊形OBDC的對(duì)角線相交于點(diǎn)E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過(guò)點(diǎn)B.求反比例函數(shù)的解析式;若點(diǎn)E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.23.(8分)如今很多初中生購(gòu)買飲品飲用,既影響身體健康又給家庭增加不必要的開(kāi)銷,為此數(shù)學(xué)興趣小組對(duì)本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:A:自帶白開(kāi)水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個(gè)統(tǒng)計(jì)圖(如圖),根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);為了養(yǎng)成良好的生活習(xí)慣,班主任決定在自帶白開(kāi)水的5名同學(xué)(男生2人,女生3人)中隨機(jī)抽取2名同學(xué)擔(dān)任生活監(jiān)督員,請(qǐng)用列表法或樹(shù)狀圖法求出恰好抽到一男一女的概率.24.(10分)如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長(zhǎng)相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且∠MAN=45°,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關(guān)系,并說(shuō)明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長(zhǎng).25.(10分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長(zhǎng)為;(2)D是OA上一點(diǎn),以BD為直徑作⊙M,⊙M交AB于點(diǎn)Q.當(dāng)⊙M與y軸相切時(shí),sin∠BOQ=;(3)如圖2,動(dòng)點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,從點(diǎn)O沿線段OA向點(diǎn)A運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)D以相同的速度,從點(diǎn)B沿折線B﹣C﹣O向點(diǎn)O運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)P作直線PE∥OC,與折線O﹣B﹣A交于點(diǎn)E.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).求當(dāng)以B、D、E為頂點(diǎn)的三角形是直角三角形時(shí)點(diǎn)E的坐標(biāo).26.(12分)如圖,在中,,的垂直平分線交于,交于,射線上,并且.()求證:;()當(dāng)?shù)拇笮M足什么條件時(shí),四邊形是菱形?請(qǐng)回答并證明你的結(jié)論.27.(12分)已知關(guān)于的方程mx2+(2m-1)x+m-1=0(m≠0).求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求整數(shù)的值.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點(diǎn)睛】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時(shí),圖象位于二四象限是解題關(guān)鍵.2、C【解析】試題分析:根據(jù)軸對(duì)稱圖形的概念:如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形.據(jù)此對(duì)圖中的圖形進(jìn)行判斷.解:圖(1)有一條對(duì)稱軸,是軸對(duì)稱圖形,符合題意;圖(2)不是軸對(duì)稱圖形,因?yàn)檎也坏饺魏芜@樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對(duì)稱圖形的定義.不符合題意;圖(3)有二條對(duì)稱軸,是軸對(duì)稱圖形,符合題意;圖(3)有五條對(duì)稱軸,是軸對(duì)稱圖形,符合題意;圖(3)有一條對(duì)稱軸,是軸對(duì)稱圖形,符合題意.故軸對(duì)稱圖形有4個(gè).故選C.考點(diǎn):軸對(duì)稱圖形.3、B【解析】
根據(jù)三視圖的定義即可解答.【詳解】正方體的三視圖都是正方形,故(1)不符合題意;圓柱的主視圖、左視圖都是矩形,俯視圖是圓,故(2)符合題意;圓錐的主視圖、左視圖都是三角形,俯視圖是圓形,故(3)符合題意;三棱錐主視圖是、左視圖是,俯視圖是三角形,故(4)不符合題意;故選B.【點(diǎn)睛】本題考查了簡(jiǎn)單幾何體的三視圖,熟知三視圖的定義是解決問(wèn)題的關(guān)鍵.4、B【解析】
根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的定義對(duì)各個(gè)圖形進(jìn)行逐一分析即可.【詳解】解:第一個(gè)圖形是軸對(duì)稱圖形,但不是中心對(duì)稱圖形;第二個(gè)圖形是中心對(duì)稱圖形,但不是軸對(duì)稱圖形;第三個(gè)圖形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形;第四個(gè)圖形即是軸對(duì)稱圖形,又是中心對(duì)稱圖形;∴既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的有兩個(gè),故選:B.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180°后兩部分重合.5、B【解析】
方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【詳解】①+②得:解得:故選:B.【點(diǎn)睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.6、D【解析】【分析】先對(duì)括號(hào)內(nèi)的進(jìn)行通分,進(jìn)行分式的加減法運(yùn)算,然后再進(jìn)行分式的乘除法運(yùn)算,最后把a(bǔ)-b=5整體代入進(jìn)行求解即可.【詳解】(﹣2)?===a-b,當(dāng)a-b=5時(shí),原式=5,故選D.7、C【解析】∵AEAB∴△ABC∽△AED。∴SΔ∴SΔ8、C【解析】
根據(jù)中位數(shù)的定義即可解答.【詳解】解:把這些數(shù)從小到大排列為:28,29,29,29,31,31,31,31,最中間的兩個(gè)數(shù)的平均數(shù)是:=30,則這組數(shù)據(jù)的中位數(shù)是30;故本題答案為:C.【點(diǎn)睛】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).9、A【解析】∵?=12-4×1×(-2)=9>0,∴方程有兩個(gè)不相等的實(shí)數(shù)根.故選A.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當(dāng)?>0時(shí),一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)?=0時(shí),一元二次方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)?<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根.10、B【解析】
根據(jù)圓周角定理求出,根據(jù)三角形內(nèi)角和定理計(jì)算即可.【詳解】解:由圓周角定理得,,,,故選:B.【點(diǎn)睛】本題考查的是三角形的外接圓與外心,掌握?qǐng)A周角定理、等腰三角形的性質(zhì)、三角形內(nèi)角和定理是解題的關(guān)鍵.11、A【解析】根據(jù)題意可知x=-1,
平均數(shù)=(-6-1-1-1+2+1)÷6=-1,
∵數(shù)據(jù)-1出現(xiàn)兩次最多,
∴眾數(shù)為-1,
極差=1-(-6)=2,
方差=[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
故選A.12、D【解析】
從正面看,有2層,3列,左側(cè)一列有1層,中間一列有2層,右側(cè)一列有一層,據(jù)此解答即可.【詳解】∵從正面看,有2層,3列,左側(cè)一列有1層,中間一列有2層,右側(cè)一列有一層,∴D是該幾何體的主視圖.故選D.【點(diǎn)睛】本題考查三視圖的知識(shí),從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實(shí)線,被遮擋的線畫虛線.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、-6【解析】
分析:∵菱形的兩條對(duì)角線的長(zhǎng)分別是6和4,∴A(﹣3,2).∵點(diǎn)A在反比例函數(shù)的圖象上,∴,解得k=-6.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?4、【解析】
先畫出同一個(gè)圓的內(nèi)接正方形和內(nèi)接正三角形,設(shè)⊙O的半徑為R,求出正方形的邊心距和正三角形的邊心距,再求出比值即可.【詳解】設(shè)⊙O的半徑為r,⊙O的內(nèi)接正方形ABCD,如圖,過(guò)O作OQ⊥BC于Q,連接OB、OC,即OQ為正方形ABCD的邊心距,∵四邊形BACD是正方形,⊙O是正方形ABCD的外接圓,∴O為正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;設(shè)⊙O的內(nèi)接正△EFG,如圖,過(guò)O作OH⊥FG于H,連接OG,即OH為正△EFG的邊心距,∵正△EFG是⊙O的外接圓,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案為:1.【點(diǎn)睛】本題考查了正多邊形與圓、解直角三角形,等邊三角形的性質(zhì)、正方形的性質(zhì)等知識(shí)點(diǎn),能綜合運(yùn)用知識(shí)點(diǎn)進(jìn)行推理和計(jì)算是解此題的關(guān)鍵.15、【解析】
如圖,過(guò)C作CD⊥y軸于D,交AB于E.設(shè)AB=2a,則BE=AE=CE=a,再設(shè)A(x,x),則B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函數(shù)的圖象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由△OAB的面積為5求得ax=5,即可得a2=,根據(jù)S△ABC=AB?CE即可求解.【詳解】如圖,過(guò)C作CD⊥y軸于D,交AB于E.∵AB⊥x軸,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,設(shè)AB=2a,則BE=AE=CE=a,設(shè)A(x,x),則B(x,x+2a),C(x+a,x+a),∵B、C在反比例函數(shù)的圖象上,∴x(x+2a)=(x+a)(x+a),解得x=3a,∵S△OAB=AB?DE=?2a?x=5,∴ax=5,∴3a2=5,∴a2=,∴S△ABC=AB?CE=?2a?a=a2=.故答案為:.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、等腰直角三角形的性質(zhì)、三角形面積,熟練掌握反比例函數(shù)上的點(diǎn)符合反比例函數(shù)的關(guān)系式是關(guān)鍵.16、【解析】
利用P(A)=,進(jìn)行計(jì)算概率.【詳解】從0,1,2,3四個(gè)數(shù)中任取兩個(gè)則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點(diǎn)睛】本題考查了概率的簡(jiǎn)單計(jì)算能力,是一道列舉法求概率的問(wèn)題,屬于基礎(chǔ)題,可以直接應(yīng)用求概率的公式.17、6【解析】根據(jù)題意得,2m=3×4,解得m=6,故答案為6.18、1:4【解析】
由S△BDE:S△CDE=1:3,得到
,于是得到
.【詳解】解:兩個(gè)三角形同高,底邊之比等于面積比.故答案為【點(diǎn)睛】本題考查了三角形的面積,比例的性質(zhì)等知識(shí),知道等高不同底的三角形的面積的比等于底的比是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)一共調(diào)查了300名學(xué)生;(2)36°,補(bǔ)圖見(jiàn)解析;(3)估計(jì)選擇“A:跑步”的學(xué)生約有800人.【解析】
(1)由跑步的學(xué)生數(shù)除以占的百分比求出調(diào)查學(xué)生總數(shù)即可;(2)求出跳繩學(xué)生占的百分比,乘以360°求出占的圓心角度數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;(3)利用跑步占的百分比,乘以2000即可得到結(jié)果.【詳解】(1)根據(jù)題意得:120÷40%=300(名),則一共調(diào)查了300名學(xué)生;(2)根據(jù)題意得:跳繩學(xué)生數(shù)為300﹣(120+60+90)=30(名),則扇形統(tǒng)計(jì)圖中“B:跳繩”所對(duì)扇形的圓心角的度數(shù)為360°×=36°,;(3)根據(jù)題意得:2000×40%=800(人),則估計(jì)選擇“A:跑步”的學(xué)生約有800人.【點(diǎn)睛】此題考查了條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖,以及用樣本估計(jì)總體,弄清題中的數(shù)據(jù)是解本題的關(guān)鍵.20、(1)本次共抽查了八年級(jí)學(xué)生是150人;(2)條形統(tǒng)計(jì)圖補(bǔ)充見(jiàn)解析;(3)108;(4)估計(jì)該市12000名七年級(jí)學(xué)生中日人均閱讀時(shí)間在0.5~1.5小時(shí)的40000人.【解析】
(1)根據(jù)第一組的人數(shù)是30,占20%,即可求得總數(shù),即樣本容量;(2)利用總數(shù)減去另外兩段的人數(shù),即可求得0.5~1小時(shí)的人數(shù),從而作出直方圖;(3)利用360°乘以日人均閱讀時(shí)間在1~1.5小時(shí)的所占的比例;(4)利用總?cè)藬?shù)12000乘以對(duì)應(yīng)的比例即可.【詳解】(1)本次共抽查了八年級(jí)學(xué)生是:30÷20%=150人;故答案為150;(2)日人均閱讀時(shí)間在0.5~1小時(shí)的人數(shù)是:150﹣30﹣45=1.(3)人均閱讀時(shí)間在1~1.5小時(shí)對(duì)應(yīng)的圓心角度數(shù)是:故答案為108;(4)(人),答:估計(jì)該市12000名七年級(jí)學(xué)生中日人均閱讀時(shí)間在0.5~1.5小時(shí)的40000人.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?1、1【解析】試題分析:(1)證明△CFD≌△DAE即可解決問(wèn)題.(2)如圖2中,作FG⊥AC于G.只要證明△CFD∽△DAE,推出=,再證明CF=AD即可.(3)證明EC=ED即可解決問(wèn)題.試題解析:(1)證明:如圖1中,∵∠ABC=∠ACB=60°,∴△ABC是等邊三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等邊三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等邊三角形.(2)證明:如圖2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四邊形ADFG是矩形,F(xiàn)C=FG,∴FG=AD,CF=AD,∴=.(3)解:如圖3中,設(shè)AC與DE交于點(diǎn)O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.點(diǎn)睛:本題考查了相似三角形綜合題、全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考?jí)狠S題.22、(1)y=;(2)1;【解析】
(1)把點(diǎn)B的坐標(biāo)代入反比例解析式求得k值,即可求得反比例函數(shù)的解析式;(2)根據(jù)點(diǎn)B(3,4)、C(m,0)的坐標(biāo)求得邊BC的中點(diǎn)E坐標(biāo)為(,2),將點(diǎn)E的坐標(biāo)代入反比例函數(shù)的解析式求得m的值,根據(jù)平行四邊形的面積公式即可求解.【詳解】(1)把B坐標(biāo)代入反比例解析式得:k=12,則反比例函數(shù)解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點(diǎn)E坐標(biāo)為(,2),將點(diǎn)E的坐標(biāo)代入反比例函數(shù)得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.【點(diǎn)睛】本題為反比例函數(shù)的綜合應(yīng)用,考查的知識(shí)點(diǎn)有待定系數(shù)法、平行四邊形的性質(zhì)、中點(diǎn)的求法.在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中用m表示出E點(diǎn)的坐標(biāo)是解題的關(guān)鍵.23、(1)詳見(jiàn)解析;(2)72°;(3)3【解析】
(1)由B類型的人數(shù)及其百分比求得總?cè)藬?shù),在用總?cè)藬?shù)減去其余各組人數(shù)得出C類型人數(shù),即可補(bǔ)全條形圖;(2)用360°乘以C類別人數(shù)所占比例即可得;(3)用列表法或畫樹(shù)狀圖法列出所有等可能結(jié)果,從中確定恰好抽到一男一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總?cè)藬?shù)為:20÷40%=50(人)∴C類人數(shù)為:50-5-20-15=10(人)補(bǔ)全條形統(tǒng)計(jì)圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設(shè)男生為A1、A2,女生為B1、B畫樹(shù)狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用以及概率的求法,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小.24、(1)45°.(1)MN1=ND1+DH1.理由見(jiàn)解析;(3)11.【解析】
(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結(jié)論;(1)由旋轉(zhuǎn)的性質(zhì)得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結(jié)論;(3)設(shè)正方形ABCD的邊長(zhǎng)為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉(zhuǎn)可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設(shè)正方形ABCD的邊長(zhǎng)為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個(gè)方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長(zhǎng)為11.【點(diǎn)睛】本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質(zhì)、勾股定理、正方形的性質(zhì)等知識(shí),難度適中.25、(4)4;(2);(4)點(diǎn)E的坐標(biāo)為(4,2)、(,)、(4,2).【解析】分析:(4)過(guò)點(diǎn)B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運(yùn)用三角函數(shù)求出BH即可.(2)過(guò)點(diǎn)B作BH⊥OA于H,過(guò)點(diǎn)G作GF⊥OA于F,過(guò)點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運(yùn)用勾股定理可求出r=2,從而得到點(diǎn)D與點(diǎn)H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進(jìn)而可求出BR.在Rt△ORB中運(yùn)用三角函數(shù)就可解決問(wèn)題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運(yùn)用相似三角形的性質(zhì)及三角函數(shù)等知識(shí)建立關(guān)于t的方程就可解決問(wèn)題.詳解:(4)過(guò)點(diǎn)B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過(guò)點(diǎn)B作BH⊥OA于H,過(guò)點(diǎn)G作GF⊥OA于F,過(guò)點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點(diǎn)D與點(diǎn)H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設(shè)OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當(dāng)∠BDE=90°時(shí),點(diǎn)D在直線PE上,如圖2.此時(shí)DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幫助考生的監(jiān)理工程師試題及答案
- 學(xué)術(shù)論文投資咨詢工程師試題及答案
- 完善備考育嬰師考試試題及答案清單
- 全方位支持的陪診師考試試題及答案
- 動(dòng)物行為矯正初步試題及答案
- 2024年人力資源管理師考前資料試題及答案
- 黑龍江省七臺(tái)河市重點(diǎn)中學(xué)2024-2025學(xué)年高三下第11次大練習(xí)英語(yǔ)試題含解析
- 傳感器與檢測(cè)技術(shù)課件 項(xiàng)目一識(shí)別與選用傳感器1.1 識(shí)別傳感器
- 黑龍江省哈爾濱三十二中2025屆高三歷史試題周練試卷含解析
- 黑龍江省哈爾濱市尚志市達(dá)標(biāo)名校2025年初三中考沖刺壓軸卷(一)化學(xué)試題含解析
- 澳大利亞PSC檢查經(jīng)過(guò)
- 01-14江蘇大學(xué)車輛工程考研復(fù)試真題答案
- TMYZX 001-2021 釀酒專用小麥原糧
- 2023年湖北國(guó)土資源職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析
- GB/T 37910.1-2019焊縫無(wú)損檢測(cè)射線檢測(cè)驗(yàn)收等級(jí)第1部分:鋼、鎳、鈦及其合金
- 雷鋒叔叔你在哪里教學(xué)反思
- (新版)國(guó)家統(tǒng)計(jì)執(zhí)法證資格考試備考題庫(kù)(含答案)
- 項(xiàng)目驗(yàn)收單標(biāo)準(zhǔn)模板
- 24式太極拳教案(1~4課)
- 小學(xué) 三年級(jí) 心理健康《最好的老師-興趣的作用》教學(xué)設(shè)計(jì)
- DB12T 1040-2021 建筑工程規(guī)劃管理技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論