版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海寶山同洲模范學(xué)校2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)向量滿足,且,則向量在向量方向上的投影為A.1 B. C. D.2.如圖,各棱長均為的正三棱柱,、分別為線段、上的動點(diǎn),且平面,,中點(diǎn)軌跡長度為,則正三棱柱的體積為()A. B. C.3 D.3.在中,角的對邊分別為,且,,,則的周長為()A. B. C. D.4.若且,則下列不等式成立的是()A. B. C. D.5.在中,角,,所對的邊分別為,,,若,,則等于()A.1 B.2 C. D.46.已知函數(shù)在區(qū)間(1,2)上是增函數(shù),則實(shí)數(shù)a的取值范圍是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)7.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為5的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲1000個點(diǎn),己知恰有400個點(diǎn)落在陰影部分,據(jù)此可估計(jì)陰影部分的面積是A.2 B.3 C.10 D.158.如圖,水平放置的三棱柱的側(cè)棱長和底邊長均為4,且側(cè)棱垂直于底面,正視圖是邊長為4的正方形,則三棱柱的左視圖面積為()A. B. C. D.9.若、、為實(shí)數(shù),則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則10.ΔABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知C=60°,b=6,c=3,則A=A.45° B.60° C.75° D.90°二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則.12.已知向量滿足,則13.有五條線段,長度分別為2,3,5,7,9,從這五條線段中任取三條,則所取三條線段能構(gòu)成一個三角形的概率為___________.14.在中,角的對邊分別為,若,則_______.(僅用邊表示)15.已知a、b為不垂直的異面直線,α是一個平面,則a、b在α上的射影有可能是:①兩條平行直線;②兩條互相垂直的直線;③同一條直線;④一條直線及其外一點(diǎn).在上面結(jié)論中,正確結(jié)論的編號是________.(寫出所有正確結(jié)論的編號)16.若數(shù)列滿足,且,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)在區(qū)間上的最大值;(2)在中,若,且,求的值.18.已知等差數(shù)列的前n項(xiàng)和為,且,.(1)求;(2)設(shè)數(shù)列的前n項(xiàng)和為,求證:.19.已知向量a=(5sin(1)求cos(α+β)(2)若0<α<β<π2,且sinα=20.內(nèi)角的對邊分別為,已知.(1)求;(2)若,,求的面積.21.如圖,四邊形是邊長為2的正方形,為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.(1)求證:平面平面;(2)求二面角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
先由題中條件,求出向量的數(shù)量積,再由向量數(shù)量積的幾何意義,即可求出投影.【詳解】因?yàn)?,,所以,所以,故向量在向量方向上的投影?故選D【點(diǎn)睛】本題主要考查平面向量的數(shù)量積,熟記平面向量數(shù)量積的幾何意義即可,屬于常考題型.2、D【解析】
設(shè)的中點(diǎn)分別為,判斷出中點(diǎn)的軌跡是等邊三角形的高,由此計(jì)算出正三棱柱的邊長,進(jìn)而計(jì)算出正三棱柱的體積.【詳解】設(shè)的中點(diǎn)分別為,連接.由于平面,所以.當(dāng)時,中點(diǎn)為平面的中心,即的中點(diǎn)(設(shè)為點(diǎn))處.當(dāng)時,此時的中點(diǎn)為的中點(diǎn).所以點(diǎn)的軌跡是三角形的高.由于三角形是等邊三角形,而,所以.故正三棱柱的體積為.故選:D【點(diǎn)睛】本小題主要考查線面平行的有關(guān)性質(zhì),考查棱柱的體積計(jì)算,考查空間想象能力,考查分析與解決問題的能力,屬于中檔題.3、C【解析】
根據(jù),得到,利用余弦定理,得到關(guān)于的方程,從而得到的值,得到的周長.【詳解】在中,由正弦定理因?yàn)椋砸驗(yàn)?,,所以由余弦定理得即,解得,所以所以的周長為.故選C.【點(diǎn)睛】本題考查正弦定理的角化邊,余弦定理解三角形,屬于簡單題.4、D【解析】
利用作差法對每一個選項(xiàng)逐一判斷分析.【詳解】選項(xiàng)A,所以a≥b,所以該選項(xiàng)錯誤;選項(xiàng)B,,符合不能確定,所以該選項(xiàng)錯誤;選項(xiàng)C,,符合不能確定,所以該選項(xiàng)錯誤;選項(xiàng)D,,所以,所以該選項(xiàng)正確.故選D【點(diǎn)睛】本題主要考查實(shí)數(shù)大小的比較,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.5、D【解析】
直接利用正弦定理得到,帶入化簡得到答案.【詳解】正弦定理:即:故選D【點(diǎn)睛】本題考查了正弦定理,意在考查學(xué)生的計(jì)算能力.6、C【解析】
由題意可得在上為減函數(shù),列出不等式組,由此解得的范圍.【詳解】∵函數(shù)在區(qū)間上是增函數(shù),∴函數(shù)在上為減函數(shù),其對稱軸為,∴可得,解得.故選:C.【點(diǎn)睛】本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.7、C【解析】
根據(jù)古典概型概率公式以及幾何概型概率公式分別計(jì)算概率,解方程可得結(jié)果.【詳解】設(shè)陰影部分的面積是s,由題意得4001000【點(diǎn)睛】(1)當(dāng)試驗(yàn)的結(jié)果構(gòu)成的區(qū)域?yàn)殚L度、面積、體積等時,應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時,關(guān)鍵是試驗(yàn)的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域.8、A【解析】
根據(jù)題意,得出該幾何體左視圖的高和寬的長度,求出它的面積,即可求解.【詳解】根據(jù)題意,該幾何體左視圖的高是正視圖的高,所以左視圖的高為,又由左視圖的寬是俯視圖三角形的底邊上的高,所以左視圖的寬為,所以該幾何體的左視圖的面積為,故選A.【點(diǎn)睛】本題考查了幾何體的三視圖及體積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.9、B【解析】
利用等式的性質(zhì)或特殊值法來判斷各選項(xiàng)中不等式的正誤.【詳解】對于A選項(xiàng),若,則,故A不成立;對于B選項(xiàng),,在不等式同時乘以,得,另一方面在不等式兩邊同時乘以,得,,故B成立;對于選項(xiàng)C,在兩邊同時除以,可得,所以C不成立;對于選項(xiàng)D,令,,則有,,,所以D不成立.故選B.【點(diǎn)睛】本題考查不等式正誤的判斷,常用的判斷方法有:不等式的基本性質(zhì)、特殊值法以及比較法,在實(shí)際操作中,可結(jié)合不等式結(jié)構(gòu)合理選擇相應(yīng)的方法進(jìn)行判斷,考查推理能力,屬于基礎(chǔ)題.10、C【解析】
利用正弦定理求出sinB的值,由b<c得出B<C,可得出角B的值,再利用三角形的內(nèi)角和定理求出角A【詳解】由正弦定理得bsinB=∵b<c,則B<C,所以,B=45°,由三角形的內(nèi)角和定理得故選:C.【點(diǎn)睛】本題考查利用正弦定理解三角形,也考查了三角形內(nèi)角和定理的應(yīng)用,在解題時要注意正弦值所對的角有可能有兩角,可以利用大邊對大角定理或兩角之和小于180°二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:兩式平方相加并整理得,所以.注意公式的結(jié)構(gòu)特點(diǎn),從整體去解決問題.考點(diǎn):三角恒等變換.12、【解析】試題分析:=,又,,代入可得8,所以考點(diǎn):向量的數(shù)量積運(yùn)算.13、【解析】
列出所有的基本事件,并找出事件“所取三條線段能構(gòu)成一個三角形”所包含的基本事件,再利用古典概型的概率公式計(jì)算出所求事件的概率.【詳解】所有的基本事件有:、、、、、、、、、,共個,其中,事件“所取三條線段能構(gòu)成一個三角形”所包含的基本事件有:、、,共個,由古典概型的概率公式可知,事件“所取三條線段能構(gòu)成一個三角形”的概率為,故答案為.【點(diǎn)睛】本題考查古典概型的概率的計(jì)算,解題的關(guān)鍵就是列舉基本事件,常見的列舉方法有:枚舉法和樹狀圖法,列舉時應(yīng)遵循不重不漏的基本原則,考查計(jì)算能力,屬于中等題.14、【解析】
直接利用正弦定理和三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.【詳解】由正弦定理,結(jié)合可得,即,即,從而.【點(diǎn)睛】本題考查的知識要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,主要考察學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.15、①②④【解析】用正方體ABCD-A1B1C1D1實(shí)例說明A1D1與BC1在平面ABCD上的投影互相平行,AB1與BC1在平面ABCD上的投影互相垂直,BC1與DD1在平面ABCD上的投影是一條直線及其外一點(diǎn).故①②④正確.16、【解析】
對已知等式左右取倒數(shù)可整理得到,進(jìn)而得到為等差數(shù)列;利用等差數(shù)列通項(xiàng)公式可求得,進(jìn)而得到的通項(xiàng)公式,從而求得結(jié)果.【詳解】,即數(shù)列是以為首項(xiàng),為公差的等差數(shù)列故答案為:【點(diǎn)睛】本題考查利用遞推公式求解數(shù)列通項(xiàng)公式的問題,關(guān)鍵是明確對于形式的遞推關(guān)系式,采用倒數(shù)法來進(jìn)行推導(dǎo).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)先將函數(shù)化簡整理,得到,根據(jù),得到,根據(jù)正弦函數(shù)的性質(zhì),即可得出結(jié)果;(2)令,得到或,根據(jù),,得出,,求出,根據(jù)正定理,即可得出結(jié)果.【詳解】(1)因?yàn)?,所以,因此;故函?shù)在區(qū)間上的最大值;(2)因?yàn)椋桑?),令,所以或,解得:或,因?yàn)?,所以,,因此,由正弦定理可得?【點(diǎn)睛】本題主要考查求正弦型復(fù)合函數(shù)在給定區(qū)間的最值,以及正弦定理的應(yīng)用,熟記正弦函數(shù)的性質(zhì),以及正弦定理即可,屬于??碱}型.18、(1);(2)見解析【解析】
(1)設(shè)公差為,由,可得解得,,從而可得結(jié)果;(2)由(1),,則有,則,利用裂項(xiàng)相消法求解即可.【詳解】(1)設(shè)公差為d,由題解得,.所以.(2)由(1),,則有.則.所以.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)與求和公式,以及裂項(xiàng)相消法求數(shù)列的和,屬于中檔題.裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見的裂項(xiàng)技巧:(1);(2);(3);(4);此外,需注意裂項(xiàng)之后相消的過程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問題,導(dǎo)致計(jì)算結(jié)果錯誤.19、(1)cos(α+β)=2【解析】
(1)根據(jù)向量數(shù)列積的坐標(biāo)運(yùn)算,化簡整理得到5cos(2)根據(jù)題中條件求出cosα=310再由cos(2α+β)=【詳解】解:(1)因?yàn)閍=(所以a?=5因?yàn)閍?b=2,所以5(2)因?yàn)?<α<π2,因?yàn)?<α<β<π2,所以因?yàn)閏os(α+β)=2所以cos因?yàn)?<α<β<π2,所以0<2α+β<【點(diǎn)睛】本題主要考查三角恒等變換,熟記兩角和的余弦公式即可,屬于??碱}型.20、(1);(2).【解析】
(1)應(yīng)用正弦的二倍角公式結(jié)合正弦定理可得,從而得.(2)用余弦定理求得,再由三角形面積公式可得三角形面積.【詳解】(1)因?yàn)?,由正弦定理,因?yàn)?,,所?因?yàn)?,所?(2)因?yàn)?,,,由余弦定理得,解得或,均適合題.當(dāng)時,的面積為.當(dāng)時,的面積為.【點(diǎn)睛】本題考查二倍角公式,正弦定理,余弦定理,考查三角形面積公式.三角形中可用公式很多,關(guān)鍵是確定先用哪個公式,再用哪個公式,象本題第(2)小題選用余弦定理求出,然后可直接求出三角形面積,解法簡捷.21、(1)見解析;(2)【解析】
(1)先由線面垂直的判定定理得到平面,進(jìn)而可得平面平面;(2)先取中點(diǎn),連結(jié),,證明平面平面,在平面內(nèi)作于點(diǎn),則平面.以點(diǎn)為原點(diǎn),為軸,為軸,如圖建立空間直角坐標(biāo)系.分別求出兩平面的法向量,求向量夾角余弦值,即可求出結(jié)果.【詳解】(1)因?yàn)樗倪呅?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人教B版六年級英語上冊階段測試試卷
- 2024洗衣店與電影院合作觀眾衣物洗滌服務(wù)協(xié)議3篇
- 2024版房屋建筑設(shè)備出租協(xié)議模板版B版
- 2024年滬科版選修3地理下冊階段測試試卷含答案
- 不銹鋼周轉(zhuǎn)料車安全操作規(guī)程
- 家居裝飾設(shè)計(jì)的人才培養(yǎng)與教育
- 小學(xué)數(shù)學(xué)課堂中的藝術(shù)教育實(shí)踐案例分析
- 2025年西師新版九年級物理下冊階段測試試卷
- 2025年人教版九年級科學(xué)下冊月考試卷
- 二零二五年度生態(tài)修復(fù)工程聯(lián)營合作協(xié)議范本3篇
- 強(qiáng)基計(jì)劃模擬卷化學(xué)
- 2022年江蘇省南京市中考?xì)v史試題(含答案)
- 商務(wù)溝通第二版第6章管理溝通
- 培訓(xùn)課件-核電質(zhì)保要求
- 過敏原檢測方法分析
- TSG_R0004-2009固定式壓力容器安全技術(shù)監(jiān)察規(guī)程
- 室外給水排水和燃?xì)鉄崃こ炭拐鹪O(shè)計(jì)規(guī)范
- 《三國演義》整本書閱讀任務(wù)單
- 外觀GRR考核表
- 大型平板車安全管理規(guī)定.doc
- 企業(yè)信用管理制度
評論
0/150
提交評論