四川省宜賓縣白花中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第1頁
四川省宜賓縣白花中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第2頁
四川省宜賓縣白花中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第3頁
四川省宜賓縣白花中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第4頁
四川省宜賓縣白花中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

四川省宜賓縣白花中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)的最小正周期為,若,則的最小值為()A. B. C. D.2.的三內(nèi)角所對的邊分別為,若,則角的大小是()A. B. C. D.3.秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為3,2,則輸出v的值為A.35 B.20 C.18 D.94.某班20名學(xué)生的期末考試成績用如圖莖葉圖表示,執(zhí)行如圖程序框圖,若輸入的()分別為這20名學(xué)生的考試成績,則輸出的結(jié)果為()A.11 B.10 C.9 D.85.已知的頂點坐標(biāo)為,,,則邊上的中線的長為()A. B. C. D.6.化簡的結(jié)果是()A. B.C. D.7.已知是不同的直線,是不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則8.長方體中的8個頂點都在同一球面上,,,,則該球的表面積為().A. B. C.50 D.9.方程表示的曲線是()A.一個圓 B.兩個圓 C.半個圓 D.兩個半圓10.名小學(xué)生的身高(單位:cm)分成了甲、乙兩組數(shù)據(jù),甲組:115,122,105,111,109;乙組:125,132,115,121,119.兩組數(shù)據(jù)中相等的數(shù)字特征是()A.中位數(shù)、極差 B.平均數(shù)、方差C.方差、極差 D.極差、平均數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列是等差數(shù)列,記數(shù)列的前項和為,若,則________.12.方程在區(qū)間內(nèi)解的個數(shù)是________13.P是棱長為4的正方體的棱的中點,沿正方體表面從點A到點P的最短路程是_______.14.設(shè)數(shù)列()是等差數(shù)列,若和是方程的兩根,則數(shù)列的前2019項的和________15.某球的體積與表面積的數(shù)值相等,則球的半徑是16.已知三棱錐外接球的表面積為,面,則該三棱錐體積的最大值為____。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)平面向量,,函數(shù).(Ⅰ)求時,函數(shù)的單調(diào)遞增區(qū)間;(Ⅱ)若銳角滿足,求的值.18.某體育老師隨機調(diào)查了100名同學(xué),詢問他們最喜歡的球類運動,統(tǒng)計數(shù)據(jù)如表所示.已知最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和.最喜歡的球類運動足球籃球排球乒乓球羽毛球網(wǎng)球人數(shù)a201015b5(1)求的值;(2)將足球、籃球、排球統(tǒng)稱為“大球”,將乒乓球、羽毛球、網(wǎng)球統(tǒng)稱為“小球”.現(xiàn)按照喜歡大、小球的人數(shù)用分層抽樣的方式從調(diào)查的同學(xué)中抽取5人,再從這5人中任選2人,求這2人中至少有一人喜歡小球的概率.19.手機支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機)對所消費的商品或服務(wù)進行賬務(wù)支付的一種服務(wù)方式.繼卡類支付、網(wǎng)絡(luò)支付后,手機支付儼然成為新寵.某金融機構(gòu)為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.組數(shù)第l組第2組第3組第4組第5組分組頻數(shù)203630104(1)求;(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.20.如圖扇形的圓心角,半徑為2,E為弧AB的中點C?D為弧AB上的動點,且,記,四邊形ABCD的面積為.(1)求函數(shù)的表達式及定義域;(2)求的最大值及此時的值21.如圖所示,是正三角形,和都垂直于平面,且,,是的中點,求證:(1)平面;(2).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由正弦型函數(shù)的最小正周期可求得,得到函數(shù)解析式,從而確定函數(shù)的最大值和最小值;根據(jù)可知和必須為最大值點和最小值點才能夠滿足等式;利用整體對應(yīng)的方式可構(gòu)造方程組求得,;從而可知時取最小值.【詳解】由最小正周期為可得:,和分別為的最大值點和最小值點設(shè)為最大值點,為最小值點,當(dāng)時,本題正確選項:【點睛】本題考查正弦型函數(shù)性質(zhì)的綜合應(yīng)用,涉及到正弦型函數(shù)最小正周期和函數(shù)值域的求解;關(guān)鍵是能夠根據(jù)函數(shù)的最值確定和為最值點,從而利用整體對應(yīng)的方式求得結(jié)果.2、C【解析】

將進行整理,反湊余弦定理,即可得到角.【詳解】因為即故可得又故.故選:C.【點睛】本題考查余弦定理的變形,屬基礎(chǔ)題.3、C【解析】試題分析:模擬算法:開始:輸入成立;,成立;,成立;,不成立,輸出.故選C.考點:1.數(shù)學(xué)文化;2.程序框圖.4、A【解析】

首先判斷程序框圖的功能,然后從莖葉圖數(shù)出相應(yīng)人數(shù),從而得到答案.【詳解】由算法流程圖可知,其統(tǒng)計的是成績大于等于120的人數(shù),所以由莖葉圖知:成績大于等于120的人數(shù)為11,故選A.【點睛】本題主要考查算法框圖的輸出結(jié)果,意在考查學(xué)生的分析能力及計算能力,難度不大.5、D【解析】

利用中點坐標(biāo)公式求得,再利用兩點間距離公式求得結(jié)果.【詳解】由,可得中點又本題正確選項:【點睛】本題考查兩點間距離公式的應(yīng)用,關(guān)鍵是能夠利用中點坐標(biāo)公式求得中點坐標(biāo).6、D【解析】

確定角的象限,結(jié)合三角恒等式,然后確定的符號,即可得到正確選項.【詳解】因為為第二象限角,所以,故選D.【點睛】本題是基礎(chǔ)題,考查同角三角函數(shù)的基本關(guān)系式,象限三角函數(shù)的符號,考查計算能力,??碱}型.7、D【解析】

由線面平行的判定定理即可判斷A;由線面垂直的判定定理可判斷B;由面面垂直的性質(zhì)可判斷C;由空間中垂直于同一條直線的兩平面平行可判斷D.【詳解】對于A選項,加上條件“”結(jié)論才成立;對于B選項,加上條件“直線和相交”結(jié)論才成立;對于C選項,加上條件“”結(jié)論才成立.故選:D【點睛】本題考查空間直線與平面的位置關(guān)系,涉及線面平行的判定、線面垂直的判定、面面垂直的性質(zhì),屬于基礎(chǔ)題.8、C【解析】

根據(jù)長方體的外接球性質(zhì)及球的表面積公式,化簡即可得解.【詳解】根據(jù)長方體的外接球直徑為體對角線長,則,所以,則由球的表面積公式可得,故選:C.【點睛】本題考查了長方體外接球的性質(zhì)及球表面積公式應(yīng)用,屬于基礎(chǔ)題.9、D【解析】原方程即即或故原方程表示兩個半圓.10、C【解析】

將甲、乙兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、方差全部算出來,并進行比較,可得出答案.【詳解】甲組數(shù)據(jù)由小到大排列依次為:、、、、,極差為,平均數(shù)為中位數(shù)為,方差為,乙組數(shù)據(jù)由小到大排列依次為:、、、、,極差為,平均數(shù)為中位數(shù)為,方差為,因此,兩組數(shù)據(jù)相等的是極差和方差,故選C.【點睛】本題考查樣本的數(shù)字特征,理解極差、平均數(shù)、中位數(shù)、方差的定義并利用相關(guān)公式進行計算是解本題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

由等差數(shù)列的求和公式和性質(zhì)可得,代入已知式子可得.【詳解】由等差數(shù)列的求和公式和性質(zhì)可得:=,且,∴.故答案為:1.【點睛】本題考查了等差數(shù)列的求和公式及性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.12、4.【解析】分析:通過二倍角公式化簡得到,進而推斷或,進而求得結(jié)果.詳解:,所以或,因為,所以或或或,故解的個數(shù)是4.點睛:該題考查的是有關(guān)方程解的個數(shù)問題,在解題的過程中,涉及到的知識點有正弦的倍角公式,方程的求解問題,注意一定不要兩邊除以,最后求得結(jié)果.13、【解析】

從圖形可以看出圖形的展開方式有二,一是以底棱BC,CD為軸,可以看到此兩種方式是對稱的,所得結(jié)果一樣,另外一種是以側(cè)棱為軸展開,即以BB1,DD1為軸展開,此兩種方式對稱,求得結(jié)果一樣,故解題時選擇以BC為軸展開與BB1為軸展開兩種方式驗證即可【詳解】由題意,若以BC為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為4,6,故兩點之間的距離是若以BB1為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為2,8,故兩點之間的距離是故沿正方體表面從點A到點P的最短路程是cm故答案為【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,求解的關(guān)鍵是能夠根據(jù)題意把求幾何體表面上兩點距離問題轉(zhuǎn)移到平面中來求14、2019【解析】

根據(jù)二次方程根與系數(shù)的關(guān)系得出,再利用等差數(shù)列下標(biāo)和的性質(zhì)得到,然后利用等差數(shù)列求和公式可得出答案.【詳解】由二次方程根與系數(shù)的關(guān)系可得,由等差數(shù)列的性質(zhì)得出,因此,等差數(shù)列的前項的和為,故答案為.【點睛】本題考查等差數(shù)列的性質(zhì)與等差數(shù)列求和公式的應(yīng)用,涉及二次方程根與系數(shù)的關(guān)系,解題的關(guān)鍵在于等差數(shù)列性質(zhì)的應(yīng)用,屬于中等題.15、3【解析】試題分析:,解得.考點:球的體積和表面積16、【解析】

根據(jù)球的表面積計算出球的半徑.利用勾股定理計算出三角形外接圓的半徑,根據(jù)正弦定理求得的長,再根據(jù)圓內(nèi)三角形面積的最大值求得三角形面積的最大值,由此求得三棱錐體積的最大值.【詳解】畫出圖像如下圖所示,其中是外接球的球心,是底面三角形的外心,.設(shè)球的半徑為,三角形外接圓的半徑為,則,故在中,.在三角形中,由正弦定理得.故三角形為等邊三角形,其高為.由于為定值,而三角形的高等于時,三角形的面積取得最大值,由于為定值,故三棱錐的體積最大值為.【點睛】本小題主要考查外接球有關(guān)計算,考查三棱錐體積的最大值的計算,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用向量的數(shù)量積結(jié)合兩角和與差的三角函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,利用正弦函數(shù)的單調(diào)增區(qū)間,求得時函數(shù)f(x)的單調(diào)遞增區(qū)間;(Ⅱ)若銳角α滿足,可得cos的值,然后求的值.【詳解】解:(Ⅰ).由得,其中單調(diào)遞增區(qū)間為,可得,∴時f(x)的單調(diào)遞增區(qū)間為.(Ⅱ),∵α為銳角,∴..【點睛】本題考查向量的數(shù)量積以及三角函數(shù)的化簡求值,考查了二倍角公式的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力,屬于中檔題.18、(1);(2)【解析】

(1)根據(jù)最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和,以及總?cè)藬?shù)列方程組求解;(2)利用分層抽樣,抽取的5人中,3人喜歡大球,2人喜歡小球,根據(jù)古典概型求解概率.【詳解】(1)由題最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和,所以,解得:,所以;(2)由題可得:喜歡大球的60人,喜歡小球的40人,按照分層抽樣抽取5人,其中喜歡大球的3人記為,喜歡小球的2人記為,從中任取2人,情況為:共10種,這兩人中,至少一人喜歡小球的情況:共7種,所以所求概率為;【點睛】此題考查統(tǒng)計與概率相關(guān)知識,涉及分層抽樣和求古典概型,關(guān)鍵在于弄清基本事件總數(shù)和某一事件包含的基本事件個數(shù).19、(1);(2)第1組2人,第3組3人,第4組1人;(3)【解析】

(1)直接計算.(2)根據(jù)分層抽樣的規(guī)律按照比例抽取.(3)設(shè)第1組抽取的2人為,,第3組抽取的3人為,,,第4組抽取的1人為,排列出所有可能,再計算滿足條件的個數(shù),相除得到答案.【詳解】解:(1)由題意可知,,(2)第1,3,4組共有60人,所以抽取的比例是則從第1組抽取的人數(shù)為,從第3組抽取的人數(shù)為,從第4組抽取的人數(shù)為;(3)設(shè)第1組抽取的2人為,,第3組抽取的3人為,,,第4組抽取的1人為,則從這6人中隨機抽取2人有如下種情形:,,,,,,,,,,,,,,共有15個基本事件.其中符合“抽取的2人來自同一個組”的基本事件有,,,共4個基本事件,所以抽取的2人來自同一個組的概率.【點睛】本題考查了頻率直方圖,分層抽樣,概率的計算,意在考查學(xué)生解決問題的能力.20、(1)(2)當(dāng)時,取最大值.【解析】

(1)取OE與DC?AB的交點分別為M?N,在中,分別求出,,再利用梯形的面積公式求解即可;(2)令,則,,再求最值即可.【詳解】解:(1),OE與DC?AB的交點分別為M?N,由已知可知,在中,.,,梯形ABCD的高,則.(2)設(shè),則,,則,,則.,當(dāng)時,,此時,即,,,,故.故的最大值為,此時.【點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論