版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
江蘇省揚州市邗江區(qū)三校2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)的最小正周期為,若,則的最小值為()A. B. C. D.2.已知,則下列不等式成立的是()A. B. C. D.3.中,角所對的邊分別為,已知向量,,且共線,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形4.直線的傾斜角的取值范圍是()A. B. C. D.5.若是兩條不同的直線,是三個不同的平面,則下列結(jié)論中正確的是()A.若,則 B.若,則C.若,則 D.若,則6.過點P(0,2)作直線x+my﹣4=0的垂線,垂足為Q,則Q到直線x+2y﹣14=0的距離最小值為()A.0 B.2 C. D.27.已知銳角△ABC的面積為,BC=4,CA=3,則角C的大小為()A.75° B.60° C.45° D.30°8.的值為()A. B. C. D.9.若關(guān)于的方程有且只有兩個不同的實數(shù)根,則實數(shù)的取值范圍是()A. B. C. D.10.在中,角A,B,C的對邊分別為a,b,c,若,則角=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在數(shù)列中,,則______________.12.若圓與圓的公共弦長為,則________.13.已知數(shù)列的前項和為,若,則______.14.設常數(shù),函數(shù),若的反函數(shù)的圖像經(jīng)過點,則_______.15.已知向量為單位向量,向量,且,則向量的夾角為__________.16.若函數(shù)的反函數(shù)的圖象過點,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知公差不為0的等差數(shù)列的前項和為,,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.18.已知函數(shù).(1)證明函數(shù)在定義域上單調(diào)遞增;(2)求函數(shù)的值域;(3)令,討論函數(shù)零點的個數(shù).19.已知向量,不是共線向量,,,(1)判斷,是否共線;(2)若,求的值20.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.求證:(1)AC⊥BC1;(2)AC1∥平面CDB1.21.設函數(shù),其中.(1)在實數(shù)集上用分段函數(shù)形式寫出函數(shù)的解析式;(2)求函數(shù)的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
由正弦型函數(shù)的最小正周期可求得,得到函數(shù)解析式,從而確定函數(shù)的最大值和最小值;根據(jù)可知和必須為最大值點和最小值點才能夠滿足等式;利用整體對應的方式可構(gòu)造方程組求得,;從而可知時取最小值.【詳解】由最小正周期為可得:,和分別為的最大值點和最小值點設為最大值點,為最小值點,當時,本題正確選項:【點睛】本題考查正弦型函數(shù)性質(zhì)的綜合應用,涉及到正弦型函數(shù)最小正周期和函數(shù)值域的求解;關(guān)鍵是能夠根據(jù)函數(shù)的最值確定和為最值點,從而利用整體對應的方式求得結(jié)果.2、D【解析】
依次判斷每個選項得出答案.【詳解】A.,取,不滿足,排除B.,取,不滿足,排除C.,當時,不滿足,排除D.,不等式兩邊同時除以不為0的正數(shù),成立故答案選D【點睛】本題考查了不等式的性質(zhì),意在考查學生的基礎知識.3、D【解析】
由向量共線的坐標表示得一等式,然后由正弦定理化邊為角,利用誘導公式得展開后代入原式化簡得,分類討論得解.【詳解】∵共線,∴,即,,,整理得,所以或,或或(舍去).∴三角形為直角三角形或等腰三角形.故選:D.【點睛】本題考查三角形形狀的判斷,考查向量共線的坐標表示,考查正弦定理,兩角和的正弦公式,考查三角函數(shù)性質(zhì).解題時不能隨便約分漏解.4、B【解析】
由直線的方程可確定直線的斜率,可得其范圍,進而可求傾斜角的取值范圍.【詳解】解:直線的斜率為,,根據(jù)正切函數(shù)的性質(zhì)可得傾斜角的取值范圍是故選:.【點睛】本題考查直線的斜率與傾斜角的關(guān)系,屬于基礎題.5、C【解析】
試題分析:兩個平面垂直,一個平面內(nèi)的直線不一定垂直于另一個平面,所以A不正確;兩個相交平面內(nèi)的直線也可以平行,所以B不正確;垂直于同一個平面的兩個平面不一定垂直,也可能平行或相交,所以D不正確;根據(jù)面面垂直的判定定理知C正確.考點:空間直線、平面間的位置關(guān)系.【詳解】請在此輸入詳解!6、C【解析】
由直線過定點,得到的中點,由垂直直線,得到點在以點為圓心,以為半徑的圓,求得圓的方程,由此求出到直線的距離最小值,得到答案.【詳解】由題意,過點作直線的垂線,垂足為,直線過定點,由中點公式可得,的中點,由垂直直線,所以點點在以點為圓心,以為半徑的圓,其圓的方程為,則圓心到直線的距離為所以點到直線的距離最小值;,故選:C.【點睛】本題主要考查了圓的標準方程,直線與圓的位置關(guān)系的應用,同時涉及到點到直線的距離公式的應用,著重考查了推理與計算能力,以及分析問題和解答問題的能力,試題綜合性強,屬于中檔試題.7、B【解析】試題分析:由三角形的面積公式,得,即,解得,又因為三角形為銳角三角形,所以.考點:三角形的面積公式.8、C【解析】試題分析:.考點:誘導公式.9、B【解析】
方程化為,可轉(zhuǎn)化為半圓與直線有兩個不同交點,作圖后易得.【詳解】由得由題意半圓與直線有兩個不同交點,直線過定點,作出半圓與直線,如圖,當直線過時,,,當直線與半圓相切(位置)時,由,解得.所以的取值范圍是.故選:B.【點睛】本題考查方程根的個數(shù)問題,把問題轉(zhuǎn)化為直線與半圓有兩個交點后利用數(shù)形結(jié)合思想可以方便求解.10、A【解析】
由正弦定理可解得,利用大邊對大角可得范圍,從而解得A的值.【詳解】,由正弦定理可得:,,由大邊對大角可得:,解得:.故選A.【點睛】本題主要考查了正弦定理,大邊對大角,正弦函數(shù)的圖象和性質(zhì)等知識的應用,解題時要注意分析角的范圍.二、填空題:本大題共6小題,每小題5分,共30分。11、20【解析】
首先根據(jù)已知得到:是等差數(shù)列,公差,再計算即可.【詳解】因為,所以數(shù)列是等差數(shù)列,公差..故答案為:【點睛】本題主要考查等差數(shù)列的判斷和等差數(shù)列項的求法,屬于簡單題.12、【解析】將兩個方程兩邊相減可得,即代入可得,則公共弦長為,所以,解之得,應填.13、【解析】
利用和的關(guān)系計算得到答案.【詳解】當時,滿足通項公式故答案為【點睛】本題考查了和的關(guān)系,忽略的情況是容易發(fā)生的錯誤.14、1【解析】
反函數(shù)圖象過(2,1),等價于原函數(shù)的圖象過(1,2),代點即可求得.【詳解】依題意知:f(x)=lg(x+a)的圖象過(1,2),∴l(xiāng)g(1+a)=2,解得a=1.故答案為:1【點睛】本題考查了反函數(shù),熟記其性質(zhì)是關(guān)鍵,屬基礎題.15、【解析】因為,所以,所以,所以,則.16、【解析】
由反函數(shù)的性質(zhì)可得的圖象過,將代入,即可得結(jié)果.【詳解】的反函數(shù)的圖象過點,的圖象過,故答案為.【點睛】本題主要考查反函數(shù)的基本性質(zhì),意在考查對基礎知識掌握的熟練程度,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
試題分析:(1)由已知條件,利用等差數(shù)列的前n項和公式和通項公式及等比數(shù)列的性質(zhì)列出方程組,求出等差數(shù)列的首項和公差,由此能求出數(shù)列{an}的通項公式;(2)由題意推導出bn=22n+1+1,由此利用分組求和法能求出數(shù)列{bn}的前n項和.詳解:(Ⅰ)設等差數(shù)列的公差為.因為,所以.①因為成等比數(shù)列,所以.②由①,②可得:.所以.(Ⅱ)由題意,設數(shù)列的前項和為,,,所以數(shù)列為以為首項,以為公比的等比數(shù)列所以點睛:這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知和的關(guān)系,求表達式,一般是寫出作差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等.18、(1)證明見解析;(2);(3)當時,沒有零點;當時,有且僅有一個零點【解析】
(1)求出函數(shù)定義域后直接用定義法即可證明;(2)由題意得,對兩邊同時平方得,求出的取值范圍即可得解;(3)轉(zhuǎn)化條件得,令,利用二次函數(shù)的性質(zhì)分類討論即可得解.【詳解】(1)證明:令,解得,故函數(shù)的定義域為令,由,可得,所以,,故即,所以函數(shù)在定義域上單調(diào)遞增.(2)由,,故,,當時,,有,可得:,故,由,可得,故函數(shù)的值域為,(3)由(2)知,則,令,則,令,①當時,,此時函數(shù)沒有零點,故函數(shù)也沒有零點;②當時,二次函數(shù)的對稱軸為,則函數(shù)在區(qū)間單調(diào)遞增,而,,故函數(shù)有一個零點,又由函數(shù)單調(diào)遞增,可得函數(shù)也只有一個零點;③當時,,二次函數(shù)開口向下,對稱軸,又,,此時函數(shù)沒有零點,故函數(shù)也沒有零點.綜上,當時,函數(shù)沒有零點;當時,函數(shù)有且僅有一個零點.【點睛】本題考查了函數(shù)單調(diào)性的證明、值域的求解和零點問題,考查了轉(zhuǎn)化化歸思想和分類討論思想,屬于中檔題.19、(1)與不共線.(2)【解析】
(1)假設與共線,由此列方程組,解方程組判斷出與不共線.(2)根據(jù)兩個向量平行列方程組,解方程組求得的值.【詳解】解:(1)若與共線,由題知為非零向量,則有,即,∴得到且,∴不存在,即與不平行.(2)∵,則,即,即,解得.【點睛】本小題主要考查判斷兩個向量是否共線,考查根據(jù)兩個向量平行求參數(shù),屬于基礎題.20、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)由勾股定理可證得為直角三角形即可證得,由直棱柱可知面,可證得,根據(jù)線面垂直的判定定理可證得面,從而可得.(2)設與的交點為,連結(jié),由中位線可證得,根據(jù)線面平行的判定定理可證得平面.試題解析:證明:(1)證明:,,為直角三角形且,即.又∵三棱柱為直棱柱,面,面,,,面,面,.(2)設與的交點為,連結(jié),是的中點,是的中點,.面,面,平面.考點:1線線垂直,線面垂直;2線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽理工大學《熱工與流體力學》2021-2022學年第一學期期末試卷
- 沈陽理工大學《光電類導論》2021-2022學年期末試卷
- 沈陽理工大學《單片機原理與應用》2021-2022學年期末試卷
- 管護經(jīng)營合同更名理
- 合同標準安全條款自查報告范文
- 銀行員工轉(zhuǎn)正申請書范文6篇
- 2024系統(tǒng)開發(fā)合同2
- 2024消防工程合同范本(修改)
- 深圳大學《中美關(guān)系史》2021-2022學年第一學期期末試卷
- 應急管理條例解讀
- 高夫品牌市場分析報告
- 職業(yè)規(guī)劃書-數(shù)字化設計與制造技術(shù)
- 國家臨床重點??平ㄔO項目申報書
- 成語故事一葉障目
- 美術(shù)培訓幼兒園課件
- 《中小學書法教育指導綱要》解讀
- 煤炭檢驗培訓課件
- 雙塔精餾公用工程故障處理(完成)雙塔精餾公用工程故障處理(完成)
- 小學生學籍卡片.模板
- 印刷設計行業(yè)檔案管理制度完善
- 少年科普經(jīng)典:從一到無窮大
評論
0/150
提交評論