




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
重慶南開中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若是2與8的等比中項(xiàng),則等于()A. B. C. D.322.已知點(diǎn)在角的終邊上,函數(shù)圖象上與軸最近的兩個(gè)對稱中心間的距離為,則的值為()A. B. C. D.3.設(shè)等比數(shù)列的公比為,其前項(xiàng)的積為,并且滿足條件:;給出下列論:①;②;③值是中最大值;④使成立的最大自然數(shù)等于198.其中正確的結(jié)論是()A.①③ B.①④ C.②③ D.②④4.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.5.一支由學(xué)生組成的校樂團(tuán)有男同學(xué)48人,女同學(xué)36人,若用分層抽樣的方法從該樂團(tuán)的全體同學(xué)中抽取21人參加某項(xiàng)活動(dòng),則抽取到的男同學(xué)人數(shù)為()A.10 B.11 C.12 D.136.已知m個(gè)數(shù)的平均數(shù)為a,n個(gè)數(shù)的平均數(shù)為b,則這個(gè)數(shù)的平均數(shù)為()A. B. C. D.7.一個(gè)扇形的弧長與面積都是3,則這個(gè)扇形圓心角的弧度數(shù)為()A. B. C. D.8.某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么下列互斥但不對立的兩個(gè)事件是()A.“至少1名男生”與“全是女生”B.“至少1名男生”與“至少有1名是女生”C.“至少1名男生”與“全是男生”D.“恰好有1名男生”與“恰好2名女生”9.在等差數(shù)列an中,a1=1,aA.13 B.16 C.32 D.3510.三角函數(shù)是刻畫客觀世界周期性變化規(guī)律的數(shù)學(xué)模型,單位圓定義法是任意角的三角函數(shù)常用的定義方法,是以角度(數(shù)學(xué)上最常用弧度制)為自變量,任意角的終邊與單位圓交點(diǎn)坐標(biāo)為因變量的函數(shù).平面直角坐標(biāo)系中的單位圓指的是平面直角坐標(biāo)系上,以原點(diǎn)為圓心,半徑為單位長度的圓.問題:已知角的終邊與單位圓的交點(diǎn)為,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的前n項(xiàng)和為,若,,,則________12.在中,,,則的值為________13.不論k為何實(shí)數(shù),直線通過一個(gè)定點(diǎn),這個(gè)定點(diǎn)的坐標(biāo)是______.14.如圖所示,已知,用表示.15.若數(shù)列的首項(xiàng),且(),則數(shù)列的通項(xiàng)公式是__________.16.已知銳角、滿足,,則的值為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(其中).(1)當(dāng)時(shí),求不等式的解集;(2)若關(guān)于的不等式恒成立,求的取值范圍.18.已知函數(shù)的最小正周期為,將的圖象向右平移個(gè)單位長度,再向上平移個(gè)單位長度得到函數(shù)的圖象.(1)求函數(shù)的解析式;(2)在中,角所對的邊分別為,若,且,求周長的取值范圍.19.在中,角所對的邊分別為.(1)若,求角的大小;(2)若是邊上的中線,求證:.20.已知向量,滿足,,且.(1)求;(2)在中,若,,求.21.已知.(Ⅰ)化簡;(Ⅱ)已知,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
利用等比中項(xiàng)性質(zhì)列出等式,解出即可?!驹斀狻坑深}意知,,∴.故選B【點(diǎn)睛】本題考查等比中項(xiàng),屬于基礎(chǔ)題。2、C【解析】由題意,則,即,則;又由三角函數(shù)的定義可得,則,應(yīng)選答案C.3、B【解析】
利用等比數(shù)列的性質(zhì)及等比數(shù)列的通項(xiàng)公式判斷①正確;利用等比數(shù)列的性質(zhì)及不等式的性質(zhì)判斷②錯(cuò)誤;利用等比數(shù)列的性質(zhì)判斷③錯(cuò)誤;利用等比數(shù)列的性質(zhì)判斷④正確,,從而得出結(jié)論.【詳解】解:由可得又即由,即,結(jié)合,所以,,即,,即,即①正確;又,所以,即,即②錯(cuò)誤;因?yàn)?,即值是中最大值,即③錯(cuò)誤;由,即,即,又,即,即④正確,綜上可得正確的結(jié)論是①④,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì)及不等式的性質(zhì),重點(diǎn)考查了運(yùn)算能力,屬中檔題.4、C【解析】關(guān)于的不等式,即的解集是,∴不等式,可化為,解得,∴所求不等式的解集是,故選C.5、C【解析】
先由男女生總數(shù)以及抽取的人數(shù)確定抽樣比,由男生總?cè)藬?shù)乘以抽樣比即可得出結(jié)果.【詳解】用分層抽樣的方法從校樂團(tuán)中抽取人,所得抽樣比為,因此抽取到的男同學(xué)人數(shù)為人.故選C【點(diǎn)睛】本題主要考查分層抽樣,熟記概念即可,屬于常考題型.6、D【解析】
根據(jù)平均數(shù)的定義求解.【詳解】兩組數(shù)的總數(shù)為:則這個(gè)數(shù)的平均數(shù)為:故選:D【點(diǎn)睛】本題主要考查了平均數(shù)的定義,還考查了運(yùn)算求解能力,屬于基礎(chǔ)題.7、B【解析】
根據(jù)扇形的弧長與面積公式,代入已知條件即可求解.【詳解】設(shè)扇形的弧長為,面積為,半徑為,圓心角弧度數(shù)為由定義可得,代入解得rad故選:B【點(diǎn)睛】本題考查了扇形的弧長與面積公式應(yīng)用,屬于基礎(chǔ)題.8、D【解析】
從3名男生和2名女生中任選2名學(xué)生的所有結(jié)果有“2名男生”、“2名女生”、“1名男生和1名女生”.選項(xiàng)A中的兩個(gè)事件為對立事件,故不正確;選項(xiàng)B中的兩個(gè)事件不是互斥事件,故不正確;選項(xiàng)C中的兩個(gè)事件不是互斥事件,故不正確;選項(xiàng)D中的兩個(gè)事件為互斥但不對立事件,故正確.選D.9、D【解析】
直接利用等差數(shù)列的前n項(xiàng)和公式求解.【詳解】數(shù)列an的前5項(xiàng)和為5故選:D【點(diǎn)睛】本題主要考查等差數(shù)列的前n項(xiàng)和的計(jì)算,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.10、A【解析】
先求出和的值,再根據(jù)誘導(dǎo)公式即可得解.【詳解】因?yàn)榻堑慕K邊與單位圓的交點(diǎn)為,所以,,則.故選:A.【點(diǎn)睛】本題考查任意角三角函數(shù)值的求法,考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題,二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
由題意首先求得數(shù)列的公差,然后結(jié)合通項(xiàng)公式確定m的值即可.【詳解】根據(jù)題意,設(shè)等差數(shù)列公差為d,則,又由,,則,,則,解可得;故答案為1.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),關(guān)鍵是掌握等差數(shù)列的通項(xiàng)公式,屬于中等題.12、【解析】
由,得到,由三角形的內(nèi)角和,求出,再由正弦定理求出的值.【詳解】因?yàn)?,,所以,所以,在中,由正弦定理得,所?【點(diǎn)睛】本題考查正弦定理解三角形,屬于簡單題.13、(2,3)【解析】
將直線方程變形為,它表示過兩直線和的交點(diǎn)的直線系,解方程組,得上述直線恒過定點(diǎn),故答案為.【方法點(diǎn)睛】本題主要考查待定直線過定點(diǎn)問題.屬于中檔題.探索曲線過定點(diǎn)的常見方法有兩種:①可設(shè)出曲線方程,然后利用條件建立等量關(guān)系進(jìn)行消元(往往可以化為的形式,根據(jù)求解),借助于曲線系的思想找出定點(diǎn)(直線過定點(diǎn),也可以根據(jù)直線的各種形式的標(biāo)準(zhǔn)方程找出定點(diǎn)).②從特殊情況入手,先探求定點(diǎn),再證明與變量無關(guān).14、【解析】
可采用向量加法和減法公式的線性運(yùn)算進(jìn)行求解【詳解】由,整理得【點(diǎn)睛】本題考查向量的線性運(yùn)算,解題關(guān)鍵在于將所有向量通過向量的加法和減法公式轉(zhuǎn)化成基底向量,屬于中檔題15、【解析】,得(),兩式相減得,即(),,得,經(jīng)檢驗(yàn)n=1不符合。所以,16、【解析】
計(jì)算出角的取值范圍,利用同角三角函數(shù)的平方關(guān)系計(jì)算出的值和的值,然后利用兩角差的余弦公式可計(jì)算出的值.【詳解】由題意可知,,,,則,.因此,.故答案為.【點(diǎn)睛】本題考查利用兩角差的余弦公式求值,同時(shí)也考查了同角三角函數(shù)的平方關(guān)系求值,解題時(shí)要明確所求角與已知角之間的關(guān)系,合理利用公式是解題的關(guān)鍵,考查運(yùn)算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】
(1)先由,將不等式化為,直接求解,即可得出結(jié)果;(2)先由題意得到恒成立,根據(jù)含絕對值不等式的性質(zhì)定理,得到,從而可求出結(jié)果.【詳解】(1)當(dāng)時(shí),求不等式,即為,所以,即或,原不等式的解集為或.(2)不等式,即為,即關(guān)于的不等式恒成立.而,所以,解得或,解得或.所以的取值范圍是.【點(diǎn)睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記不等式的解法,以及絕對值不等式的性質(zhì)定理即可,屬于??碱}型.18、(1),(2)【解析】
(1)首先根據(jù)周期為,得到,再根據(jù)圖象的平移變換即可得到的解析式.(2)根據(jù)得到,根據(jù)余弦定理得到,根據(jù)基本不等式即可得到,再求周長的取值范圍即可.【詳解】(1)周期,,.將的圖象向右平移個(gè)單位長度,再向上平移個(gè)單位長度得到.所以.(2),.因?yàn)椋裕?.因?yàn)?,所?所以,即,.所以.【點(diǎn)睛】本題第一問考查三角函數(shù)的周期和平移變換,第二問考查了余弦定理,同時(shí)還考查了基本不等式,屬于中檔題.19、(1);(2)見解析【解析】
(1)已知三邊的關(guān)系且有平方,考慮化簡式子構(gòu)成余弦定理即可。(2)觀察結(jié)論形似余弦定理,通過,則互補(bǔ),則余弦值互為相反數(shù)聯(lián)系?!驹斀狻浚?)∵,∴∴由余弦定理,得,∴∵,∴,∵,∴(2)設(shè),,則在中,由余弦定理,得在中,同理,得∵,∴,∵,∴,∴【點(diǎn)睛】解三角形要注意觀察題干條件所給的形式,出現(xiàn)邊長平方一般會考慮用到余弦定理。正弦定理和余弦定理是我們解三角形的兩大常用工具,需要熟練運(yùn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年造價(jià)工程師案例分析模擬試卷:工程造價(jià)咨詢行業(yè)案例分析策略與技巧實(shí)戰(zhàn)經(jīng)驗(yàn)試題
- 2025年中學(xué)教師資格考試《綜合素質(zhì)》教育反思與改進(jìn)教學(xué)反思總結(jié)試題(含答案)
- 2025年安全教育培訓(xùn)考試消防安全專項(xiàng)試題解析與鞏固
- 2025年成人高等學(xué)校招生考試《語文》模擬沖刺題庫:古詩文默寫與詩詞創(chuàng)作技巧解析
- DB32-T 5077-2025 城市暗涵整治技術(shù)規(guī)程
- 2025年消防安全設(shè)施維護(hù)與管理基礎(chǔ)知識試題
- 2025年書法教師職業(yè)能力測試卷:書法教師教育科研能力與成果轉(zhuǎn)化試題
- 2025年《語文》模擬試卷:文言文翻譯與詞匯記憶分析
- 2025年注冊建筑師專業(yè)知識考核建筑咨詢試題試卷
- 2025年小學(xué)英語畢業(yè)考試模擬試卷(筆試綜合知識拓展)
- 病人走失應(yīng)急預(yù)案
- 建設(shè)工程施工合同GF-2024-0201住建部
- 幼兒園緊急避險(xiǎn)安全教案
- 沼氣發(fā)電工藝流程
- 16 有為有不為 公開課一等獎(jiǎng)創(chuàng)新教案
- 2025年安康嵐皋縣嵐水流韻文化傳媒有限責(zé)任公司招聘筆試參考題庫附帶答案詳解
- 2024-2025學(xué)年人教版英語七年級下冊Unit 5 Here and now Section A Grammar教案
- 2025年全國海洋知識競賽題庫及答案(共200題)
- 潔凈風(fēng)管安裝施工方案
- 深圳廣東深圳市福田區(qū)慢性病防治院招聘工作人員筆試歷年典型考點(diǎn)(頻考版試卷)附帶答案詳解版
- 2025年云南曲靖師宗縣縣屬事業(yè)單位選調(diào)工作人員11人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
評論
0/150
提交評論