2025屆安徽省定遠縣重點中學高一數(shù)學第二學期期末綜合測試模擬試題含解析_第1頁
2025屆安徽省定遠縣重點中學高一數(shù)學第二學期期末綜合測試模擬試題含解析_第2頁
2025屆安徽省定遠縣重點中學高一數(shù)學第二學期期末綜合測試模擬試題含解析_第3頁
2025屆安徽省定遠縣重點中學高一數(shù)學第二學期期末綜合測試模擬試題含解析_第4頁
2025屆安徽省定遠縣重點中學高一數(shù)學第二學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省定遠縣重點中學高一數(shù)學第二學期期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個長方體長、寬分別為5,4,且該長方體的外接球的表面積為,則該長方體的表面積為()A.47 B.60 C.94 D.1982.等差數(shù)列中,已知,則()A.1 B.2 C.3 D.43.下列函數(shù)中,在區(qū)間上單調遞增的是()A. B. C. D.4.已知在中,,且,則的值為()A. B. C. D.5.某程序框圖如圖所示,該程序運行后輸出的值是()A. B. C. D.6.等差數(shù)列中,,則的值為()A.14 B.17 C.19 D.217.設、、為平面,為、、直線,則下列判斷正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則8.設,則()A. B. C. D.9.若圓上至少有三個不同的點到直線的距離為,則直線的斜率的取值范圍是()A. B.C. D.10.已知樣本的平均數(shù)是10,方差是2,則的值為()A.88 B.96 C.108 D.110二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列中,,以后各項由公式給出,則等于_____.12.某個年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學生中抽取一個容量為280的樣本,則此樣本中男生人數(shù)為____________.13.已知函數(shù)的圖象如圖所示,則不等式的解集為______.14.若復數(shù)(為虛數(shù)單位),則的共軛復數(shù)________15.當時,的最大值為__________.16.的內角的對邊分別為,,,若的面積為,則角_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足且,設,.(1)求;(2)求的通項公式;(3)求.18.已知,且(1)當時,解不等式;(2)在恒成立,求實數(shù)的取值范圍.19.設數(shù)列的前項和,數(shù)列為等比數(shù)列,且.(1)求數(shù)列和的通項公式;(2)設,求數(shù)列的前項和.20.設向量,,.(1)若,求實數(shù)的值;(2)求在方向上的投影.21.已知函數(shù).(1)求函數(shù)的值域和單調減區(qū)間;(2)已知為的三個內角,且,,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)球的表面積公式求得半徑,利用等于體對角線長度的一半可構造方程求出長方體的高,進而根據(jù)長方體表面積公式可求得結果.【詳解】設長方體高為,外接球半徑為,則,解得:長方體外接球半徑為其體對角線長度的一半解得:長方體表面積本題正確選項:【點睛】本題考查與外接球有關的長方體的表面積的求解問題,關鍵是能夠明確長方體的外接球半徑為其體對角線長度的一半,從而構造方程求出所需的棱長.2、B【解析】

已知等差數(shù)列中一個獨立條件,考慮利用等差中項求解.【詳解】因為為等差數(shù)列,所以,由,,故選B.【點睛】本題考查等差數(shù)列的性質,等差數(shù)列中若,則,或用基本量、表示,整體代換計算可得,屬于簡單題.3、A【解析】

判斷每個函數(shù)在上的單調性即可.【詳解】解:在上單調遞增,,和在上都是單調遞減.故選:A.【點睛】考查冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)和反比例函數(shù)的單調性.4、C【解析】

先確定D位置,根據(jù)向量的三角形法則,將用,表示出來得到答案.【詳解】故答案選C【點睛】本題考查了向量的加減,沒有注意向量方向是容易犯的錯誤.5、B【解析】

模擬程序運行后,可得到輸出結果,利用裂項相消法即可求出答案.【詳解】模擬程序運行過程如下:0),判斷為否,進入循環(huán)結構,1),判斷為否,進入循環(huán)結構,2),判斷為否,進入循環(huán)結構,3),判斷為否,進入循環(huán)結構,……9),判斷為否,進入循環(huán)結構,10),判斷為是,故輸出,故選:B.【點睛】本題主要考查程序框圖,考查裂項相消法,難度不大.一般遇見程序框圖求輸出結果時,常模擬程序運行以得到結論.6、B【解析】

利用等差數(shù)列的性質,.【詳解】,解得:.故選B.【點睛】本題考查了等比數(shù)列的性質,屬于基礎題型.7、D【解析】

根據(jù)線面、面面有關的定理,對四個選項逐一分析,由此得出正確選項.【詳解】A選項不正確,因為根據(jù)面面垂直的性質定理,需要加上:在平面內或者平行于,這個條件,才能判定.B選項不正確,因為可能平行于.C選項不正確,因為當時,或者.D選項正確,根據(jù)垂直于同一條直線的兩個平面平行,得到,直線,則可得到.綜上所述,本小題選D.【點睛】本小題主要考查空間線面、面面位置關系有關命題真假性的判斷,屬于基礎題.8、C【解析】

首先化簡,可得到大小關系,再根據(jù),即可得到的大小關系.【詳解】,,.所以.故選:C【點睛】本題主要考查指數(shù),對數(shù)的比較大小,熟練掌握指數(shù)和對數(shù)函數(shù)的性質為解題的關鍵,屬于簡單題.9、C【解析】

作出圖形,設圓心到直線的距離為,利用數(shù)形結合思想可知,并設直線的方程為,利用點到直線的距離公式可得出關于的不等式,解出即可.【詳解】如下圖所示:設直線的斜率為,則直線的方程可表示為,即,圓心為,半徑為,由于圓上至少有三個不同的點到直線的距離為,所以,即,即,整理得,解得,因此,直線的斜率的取值范圍是.故選:C.【點睛】本題考查直線與圓的綜合問題,解題的關鍵就是確定圓心到直線距離所滿足的不等式,并結合點到直線的距離公式來求解,考查數(shù)形結合思想的應用,屬于中等題.10、B【解析】

根據(jù)平均數(shù)和方差公式列方程組,得出和的值,再由可求得的值.【詳解】由于樣本的平均數(shù)為,則有,得,由于樣本的方差為,有,得,即,,因此,,故選B.【點睛】本題考查利用平均數(shù)與方差公式求參數(shù),解題的關鍵在于平均數(shù)與方差公式的應用,考查計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

可以利用前項的積與前項的積的關系,分別求得第三項和第五項,即可求解,得到答案.【詳解】由題意知,數(shù)列中,,且,則當時,;當時,,則,當時,;當時,,則,所以.【點睛】本題主要考查了數(shù)列的遞推關系式的應用,其中解答中熟練的應用遞推關系式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12、160【解析】

∵某個年級共有980人,要從中抽取280人,∴抽取比例為280980∴此樣本中男生人數(shù)為27故答案為160.考點:本題考查了分層抽樣的應用點評:掌握分層抽樣的概念是解決此類問題的關鍵,屬基礎題13、【解析】

根據(jù)函數(shù)圖象以及不等式的等價關系即可.【詳解】解:不等式等價為或,

則,或,

故不等式的解集是.

故答案為:.【點睛】本題主要考查不等式的求解,根據(jù)不等式的等價性結合圖象之間的關系是解決本題的關鍵.14、【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由共軛復數(shù)的概念得答案.【詳解】由z=i(2﹣i)=1+2i,得.故答案為1﹣2i.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查共軛復數(shù)的基本概念,是基礎題.15、-3.【解析】

將函數(shù)的表達式改寫為:利用均值不等式得到答案.【詳解】當時,故答案為-3【點睛】本題考查了均值不等式,利用一正二定三相等將函數(shù)變形是解題的關鍵.16、【解析】

根據(jù)三角形面積公式和余弦定理可得,從而求得;由角的范圍可確定角的取值.【詳解】故答案為:【點睛】本題考查余弦定理和三角形面積公式的應用問題,關鍵是能夠配湊出符合余弦定理的形式,進而得到所求角的三角函數(shù)值.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),,,;(1),;(3).【解析】

(1)依次代入計算,可求得;(1)歸納出,并用數(shù)學歸納法證明;(3)用裂項相消法求和,然后求極限.【詳解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)歸納:,下面用數(shù)學歸納法證明:1°n=1,n=1時,由(1)知成立,1°假設n=k(k>1)時,結論成立,即bk=1k1,則n=k+1時,ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1時結論成立,∴對所有正整數(shù)n,bn=1n1.(3)由(1)知n1時,,∴,.【點睛】本題考查用歸納法求數(shù)列的通項公式,考查用裂項相消法求數(shù)列的和,考查數(shù)列的極限.在求數(shù)列通項公式時,可以根據(jù)已知的遞推關系求出數(shù)列的前幾項,然后歸納出通項公式,并用數(shù)學歸納法證明,這對學生的歸納推理能力有一定的要求,這也就是我們平常所學的從特殊到一般的推理方法.18、(1);(2).【解析】試題分析:(1)當時,可得,即為,由對數(shù)函數(shù)的單調性,可得不不等式的解集;(2)由在上恒成立,得在上恒成立,討論,根據(jù)的范圍,由恒成立思想,可得的范圍.試題解析:(1)當時,解不等式,得,即,故不等式的解集為.(2)由在恒成立,得在恒成立,①當時,有,得,②當時,有,得,故實數(shù)的取值范圍.19、(1),;(2)【解析】

(1)通過求解數(shù)列的通項公式,從而可以求出首項與公比,即可得到的通項公式;(2)化簡,利用錯位相減法求解數(shù)列的和即可.【詳解】(1)∴,∴,∵,∴,∴,,∵,,∴,從而,∵數(shù)列為等比數(shù)列∴數(shù)列的公比為,從而;(2)∵,,∴∴∴,∴.【點睛】本題考查已知求的通項公式以及數(shù)列求和,考查計算能力.在通過求的通項公式時,不要忽略時的情況.20、(1);(2).【解析】

(1)計算出的坐標,然后利用共線向量的坐標表示列出等式求出實數(shù)的值;(2)求出和,從而可得出在方向上的投影為.【詳解】(1),,,,,,解得;(2),,在方向上的投影.【點睛】本題考查平面向量的坐標運算,考查共

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論