




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆遼寧省錦州市聯(lián)合校數(shù)學高一下期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖是一個射擊靶的示意圖,其中每個圓環(huán)的寬度與中心圓的半徑相等.某人朝靶上任意射擊一次沒有脫靶,則其命中深色部分的概率為()A. B. C. D.2.已知兩個單位向量的夾角為,則下列結(jié)論不正確的是()A.方向上的投影為 B.C. D.3.給出下列命題:(1)存在實數(shù)使.(2)直線是函數(shù)圖象的一條對稱軸.(3)的值域是.(4)若都是第一象限角,且,則.其中正確命題的題號為()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)4.下列四個結(jié)論正確的是()A.兩條直線都和同一個平面平行,則這兩條直線平行B.兩條直線沒有公共點,則這兩條直線平行C.兩條直線都和第三條直線平行,則這兩條直線平行D.兩條直線都和第三條直線垂直,則這兩條直線平行5.在△ABC中角ABC的對邊分別為A.B.c,cosC=,且acosB+bcosA=2,則△ABC面積的最大值為()A. B. C. D.6.下列函數(shù)中同時具有性質(zhì):①最小正周期是,②圖象關于點對稱,③在上為減函數(shù)的是()A. B.C. D.7.若角α的終邊經(jīng)過點P(-1,1A.sinα=1C.cosα=28.若點為圓C:的弦MN的中點,則弦MN所在直線的方程為()A. B. C. D.9.已知點滿足條件則的最小值為()A.9 B.-6 C.-9 D.610.甲、乙兩位同學在高一年級的5次考試中,數(shù)學成績統(tǒng)計如莖葉圖所示,若甲、乙兩人的平均成績分別是,則下列敘述正確的是()A.,乙比甲成績穩(wěn)定B.,甲比乙成績穩(wěn)定C.,乙比甲成績穩(wěn)定D.,甲比乙成績穩(wěn)定二、填空題:本大題共6小題,每小題5分,共30分。11.棱長為,各面都為等邊三角形的四面體內(nèi)有一點,由點向各面作垂線,垂線段的長度分別為,則=______.12.函數(shù),的值域為________13.已知數(shù)列為等差數(shù)列,,,若,則________.14.已知,且這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則_______________.15.若數(shù)列滿足,且,則___________.16.已知函數(shù)的圖象關于點對稱,記在區(qū)間的最大值為,且在()上單調(diào)遞增,則實數(shù)的最小值是__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,直三棱柱中,,,,,為垂足.(1)求證:(2)求三棱錐的體積.18.如圖1,已知菱形的對角線交于點,點為線段的中點,,,將三角形沿線段折起到的位置,,如圖2所示.(Ⅰ)證明:平面平面;(Ⅱ)求三棱錐的體積.19.設,,.(1)若,求實數(shù)的值;(2)若,求實數(shù)的值.20.已知函數(shù)的值域為A,.(1)當?shù)臑榕己瘮?shù)時,求的值;(2)當時,在A上是單調(diào)遞增函數(shù),求的取值范圍;(3)當時,(其中),若,且函數(shù)的圖象關于點對稱,在處取得最小值,試探討應該滿足的條件.21.已知動點P與兩個定點O(0,0),A(3,0)的距離的比值為2,點P的軌跡為曲線C.(1)求曲線C的軌跡方程(2)過點(﹣1,0)作直線與曲線C交于A,B兩點,設點M坐標為(4,0),求△ABM面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
分別求出大圓面積和深色部分面積即可得解.【詳解】設中心圓的半徑為,所以中心圓的面積為,8環(huán)面積為,射擊靶的面積為,所以命中深色部分的概率為.故選:D【點睛】此題考查幾何概型,屬于面積型,關鍵在于準確求解面積,根據(jù)圓環(huán)特征分別求出面積即可得解.2、B【解析】試題分析:A.方向上的投影為,即,所以A正確;B.,所以B錯誤;C.,所以,所以C正確;D.,所以.D正確.考點:向量的數(shù)量積;向量的投影;向量的夾角.點評:熟練掌握數(shù)量積的有關性質(zhì)是解決此題的關鍵,尤其要注意“向量的平方就等于其模的平方”這條性質(zhì).3、C【解析】
(1)化簡求值域進行判斷;(2)根據(jù)函數(shù)的對稱性可判斷;(3)根據(jù)余弦函數(shù)的圖像性質(zhì)可判斷;(4)利用三角函數(shù)線可進行判斷.【詳解】解:(1),(1)錯誤;(2)是函數(shù)圖象的一個對稱中心,(2)錯誤;(3)根據(jù)余弦函數(shù)的性質(zhì)可得的最大值為,,其值域是,(3)正確;(4)若都是第一象限角,且,利用三角函數(shù)線有,(4)正確.故選.【點睛】本題考查正弦函數(shù)與余弦函數(shù)、正切函數(shù)的性質(zhì),以及三角函數(shù)線定義,著重考查學生綜合運用三角函數(shù)的性質(zhì)分析問題、解決問題的能力,屬于中檔題.4、C【解析】
利用空間直線平面位置關系對每一個選項分析得解.【詳解】A.兩條直線都和同一個平面平行,則這兩條直線平行、相交或異面,所以該選項錯誤;B.兩條直線沒有公共點,則這兩條直線平行或異面,所以該選項錯誤;C.兩條直線都和第三條直線平行,則這兩條直線平行,是平行公理,所以該選項正確;D.兩條直線都和第三條直線垂直,則這兩條直線平行、相交或異面,所以該選項錯誤.故選:C【點睛】本題主要考查直線平面的位置關系的判斷,意在考查學生對這些知識的理解掌握水平,屬于基礎題.5、D【解析】
首先利用同角三角函數(shù)的關系式求出sinC的值,進一步利用余弦定理和三角形的面積公式及基本不等式的應用求出結(jié)果.【詳解】△ABC中角ABC的對邊分別為a、b、c,cosC,利用同角三角函數(shù)的關系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.則,△ABC面積的最大值為,故選D.【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變換,正弦定理余弦定理和三角形面積的應用,基本不等式的應用,主要考查學生的運算能力和轉(zhuǎn)換能力,屬于中檔題.6、C【解析】
根據(jù)周期公式排除A選項;根據(jù)正弦函數(shù)的單調(diào)性,排除B選項;將代入函數(shù)解析式,排除D選項;根據(jù)周期公式,將代入函數(shù)解析式,余弦函數(shù)的單調(diào)性判斷C選項正確.【詳解】對于A項,,故A錯誤;對于B項,,,函數(shù)在上單調(diào)遞增,則函數(shù)在上單調(diào)遞增,故B錯誤;對于C項,;當時,,則其圖象關于點對稱;當,,函數(shù)在區(qū)間上單調(diào)遞減,則函數(shù)在區(qū)間單調(diào)遞減,故C正確;對于D項,當時,,故D錯誤;故選:C【點睛】本題主要考查了求正余弦函數(shù)的周期,單調(diào)性以及對稱性的應用,屬于中檔題.7、B【解析】
利用三角函數(shù)的定義可得α的三個三角函數(shù)值后可得正確的選項.【詳解】因為角α的終邊經(jīng)過點P-1,1,故r=OP=所以sinα=【點睛】本題考查三角函數(shù)的定義,屬于基礎題.8、A【解析】
根據(jù)題意,先求出直線PC的斜率,根據(jù)MN與PC垂直求出MN的斜率,由點斜式,即可求出結(jié)果.【詳解】由題意知,圓心的坐標為,則,由于MN與PC垂直,故MN的斜率,故弦MN所在的直線方程為,即.故選A【點睛】本題主要考查求弦所在直線方程,熟記直線的點斜式方程即可,屬于常考題型.9、B【解析】試題分析:滿足約束條件的點的可行域,如圖所示由圖可知,目標函數(shù)在點處取得最小值,故選B.考點:線性規(guī)劃問題.10、C【解析】甲的平均成績,甲的成績的方差;乙的平均成績,乙的成績的方差.∴,乙比甲成績穩(wěn)定.故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
根據(jù)等積法可得∴12、【解析】
先求的值域,再求的值域即可.【詳解】因為,故,故.故答案為:【點睛】本題主要考查了余弦函數(shù)的值域與反三角函數(shù)的值域等,屬于基礎題型.13、【解析】
設等差數(shù)列的公差為,根據(jù)已知條件列方程組解出和的值,可求出的表達式,再由可解出的值.【詳解】設等差數(shù)列的公差為,由,得,解得,,,因此,,故答案為:.【點睛】本題考查等差數(shù)列的求和,對于等差數(shù)列的問題,通常建立關于首項和公差的方程組求解,考查方程思想,屬于中等題.14、5【解析】
試題分析:由題意得,為等差數(shù)列時,一定為等差中項,即,為等比數(shù)列時,-2為等比中項,即,所以.考點:等差,等比數(shù)列的性質(zhì)15、【解析】
對已知等式左右取倒數(shù)可整理得到,進而得到為等差數(shù)列;利用等差數(shù)列通項公式可求得,進而得到的通項公式,從而求得結(jié)果.【詳解】,即數(shù)列是以為首項,為公差的等差數(shù)列故答案為:【點睛】本題考查利用遞推公式求解數(shù)列通項公式的問題,關鍵是明確對于形式的遞推關系式,采用倒數(shù)法來進行推導.16、【解析】,所以,又,得,所以,且求得,又,得單調(diào)遞增區(qū)間為,由題意,當時,。點睛:本題考查三角函數(shù)的化簡及性質(zhì)應用。本題首先考查三角函數(shù)的輔助角公式應用,并結(jié)合對稱中心的性質(zhì),得到函數(shù)解析式。然后考察三角函數(shù)的單調(diào)性,利用整體思想求出單調(diào)區(qū)間,求得答案。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】
(1)先證得平面,由此證得,結(jié)合題意所給已知條件,證得平面,從而證得.(2)首先證得平面,由計算出三棱錐的體積.【詳解】(1)證明:,∴,又,從而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【點睛】本小題主要考查線線垂直的證明,考查線面垂直的判定定理的運用,考查三棱錐體積的求法,屬于中檔題.18、(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)折疊前,AC⊥DE;,從而折疊后,DE⊥PF,DE⊥CF,由此能證明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.說明四邊形DEBC為平行四邊形.可得CB∥DE.由此能證明平面PBC⊥平面PCF.(Ⅱ)由題意根據(jù)勾股定理運算得到,又由(Ⅰ)的結(jié)論得到,可得平面,再利用等體積轉(zhuǎn)化有,計算結(jié)果.【詳解】(Ⅰ)折疊前,因為四邊形為菱形,所以;所以折疊后,,,又,平面,所以平面因為四邊形為菱形,所以.又點為線段的中點,所以.所以四邊形為平行四邊形.所以.又平面,所以平面.因為平面,所以平面平面.(Ⅱ)圖1中,由已知得,,所以圖2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱錐的體積為.【點睛】本題考查線面垂直、面面垂直的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,考查了三棱錐體積的求法,運用了轉(zhuǎn)化思想,是中檔題.19、(1);(2)【解析】
(1)由向量加法的坐標運算可得:,再由向量平行的坐標運算即可得解.(2)由向量垂直的坐標運算即可得解.【詳解】解:(1),,,,,故,所以.(2),,,所以.【點睛】本題考查了向量加法的坐標運算、向量平行和垂直的坐標運算,屬基礎題.20、(1);(2);(3).【解析】
(1)由函數(shù)為偶函數(shù),可得,故,由此可得的值.(2)化簡函數(shù),求出,化簡,由題意可知:,由此可得的取值范圍.(3)由條件得,再由,,可得.由的圖象關于點,對稱求得,可得.再由的圖象關于直線成軸對稱,所以,可得,,由此求得滿足的條件.【詳解】解:(1)因為函數(shù)為偶函數(shù),所以,得對恒成立,即,所以.(2),即,,由題意可知:得,∴.(3)又∵,,,不妨設,,則,其中,由函數(shù)的圖像關于點對稱,在處取得最小值得,即,故.【點睛】本題主要考查三角函數(shù)的奇偶性,單調(diào)性和對稱性的綜合應用,屬于中檔題.21、(1);(2)2【解析】
(1)設點,運用兩點的距離公式,化簡整理可得所求軌跡方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村墳地賠償協(xié)議書
- 生產(chǎn)型企業(yè)車間管理教程
- 分手吵架賠償協(xié)議書
- 紅旗汽車購車協(xié)議書
- 車輛代理采購協(xié)議書
- 出讓項目股權(quán)協(xié)議書
- 購房協(xié)議書變更公證
- 單位人員保密協(xié)議書
- 公司征收房屋協(xié)議書
- 新河北省安全生產(chǎn)條例重點解讀2學時課件
- 2025年山東省東營市廣饒縣一中中考一模英語試題(原卷版+解析版)
- 浙江省寧波市鎮(zhèn)海中學2024-2025學年高考二模英語試題試卷含解析
- 高校班干部培訓
- 房 產(chǎn) 稅教學課件
- 2025年晉中職業(yè)技術學院單招職業(yè)適應性測試題庫參考答案
- 【語言文字運用】考點45 邏輯推斷(新增考點)(解析版)
- 2025年江蘇蘇北四市高三一模高考地理試卷試題(含答案詳解)
- 《石油化工金屬管道工程施工質(zhì)量驗收規(guī)范2023版》
- 2024年度餐廳與旅行社旅游服務定制化合同3篇
- 腸梗阻業(yè)務學習
- 電梯故障代碼表
評論
0/150
提交評論