版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山東臨沂市高一下數(shù)學期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的圖像的一條對稱軸是()A. B. C. D.2.等差數(shù)列中,,則().A.110 B.120 C.130 D.1403.若平面∥平面,直線∥平面,則直線與平面的關(guān)系為()A.∥ B. C.∥或 D.4.已知函數(shù),則下列說法正確的是()A.圖像的對稱中心是B.在定義域內(nèi)是增函數(shù)C.是奇函數(shù)D.圖像的對稱軸是5.已知扇形圓心角為,面積為,則扇形的弧長等于()A. B. C. D.6.中,,則()A. B. C.或 D.7.下列說法正確的是()A.命題“若,則.”的否命題是“若,則.”B.是函數(shù)在定義域上單調(diào)遞增的充分不必要條件C.D.若命題,則8.某三棱錐的三視圖如圖所示,該三棱錐的外接球表面積為()A. B. C. D.9.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.1010.已知函數(shù)f(x),則f[f(2)]=()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在等腰直角三角形ABC中,,,以AB為直徑在外作半圓O,P是半圓弧AB上的動點,點Q在斜邊BC上,若,則的取值范圍是________.12.在數(shù)列中,,是其前項和,當時,恒有、、成等比數(shù)列,則________.13.若直線l1:y=kx+1與直線l2關(guān)于點(2,3)對稱,則直線l2恒過定點_____,l1與l2的距離的最大值是_____.14.在中,,,是角,,所對應(yīng)的邊,,,如果,則________.15.在中,為邊中點,且,,則______.16.分形幾何學是美籍法國數(shù)學家伯努瓦.B.曼德爾布羅特在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)科學眾多領(lǐng)域的難題提供了全新的思路,下圖是按照一定的分形規(guī)律生長成一個數(shù)形圖,則第13行的實心圓點的個數(shù)是________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.若三點共線,求實數(shù)的值.18.已知函數(shù).(1)求的最小正周期.(2)求在區(qū)間上的最小值.19.在如圖所示的幾何體中,D是AC的中點,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求證:AC⊥FB;(Ⅱ)已知G,H分別是EC和FB的中點.求證:GH∥平面ABC.20.已知直線恒過定點,圓經(jīng)過點和定點,且圓心在直線上.(1)求圓的方程;(2)已知點為圓直徑的一個端點,若另一端點為點,問軸上是否存在一點,使得為直角三角形,若存在,求出的值;若不存在,說明理由.21.已知數(shù)列中,,點在直線上,其中.(1)令,求證數(shù)列是等比數(shù)列;(2)求數(shù)列的通項;(3)設(shè)、分別為數(shù)列、的前項和是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出,若不存在,則說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】對稱軸穿過曲線的最高點或最低點,把代入后得到,因而對稱軸為,選.2、B【解析】
直接運用等差數(shù)列的下標關(guān)系即可求出的值.【詳解】因為數(shù)列是等差數(shù)列,所以,因此,故本題選B.【點睛】本題考查了等差數(shù)列下標性質(zhì),考查了數(shù)學運算能力.3、C【解析】
利用空間幾何體,發(fā)揮直觀想象,易得直線與平面的位置關(guān)系.【詳解】設(shè)平面為長方體的上底面,平面為長方體的下底面,因為直線∥平面,所以直線通過平移后,可能與平面平行,也可能平移到平面內(nèi),所以∥或.【點睛】空間中點、線、面位置關(guān)系問題,??梢越柚L方體進行研究,考查直觀想象能力.4、A【解析】
根據(jù)正切函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】.,由得,,的對稱中心為,,故正確;.在定義域內(nèi)不是增函數(shù),故錯誤;.為非奇非偶函數(shù),故錯誤;.的圖象不是軸對稱圖形,故錯誤.故選.【點睛】本題考查了正切函數(shù)的圖象與性質(zhì),考查了整體思想,意在考查學生對這些知識的理解掌握水平,屬基礎(chǔ)題.5、C【解析】
根據(jù)扇形面積公式得到半徑,再計算扇形弧長.【詳解】扇形弧長故答案選C【點睛】本題考查了扇形的面積和弧長公式,解出扇形半徑是解題的關(guān)鍵,意在考查學生的計算能力.6、A【解析】
根據(jù)正弦定理,可得,然后根據(jù)大邊對大角,可得結(jié)果..【詳解】由,所以由,所以故,所以故選:A【點睛】本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.7、D【解析】“若p則q”的否命題是“若則”,所以A錯。在定義上并不是單調(diào)遞增函數(shù),所以B錯。不存在,C錯。全稱性命題的否定是特稱性命題,D對,選D.8、D【解析】
根據(jù)三視圖還原幾何體,由三棱錐的幾何特征即可求出其外接球表面積.【詳解】根據(jù)三視圖可知,該幾何體如圖所示:所以該幾何體的外接球,即是長方體的外接球.因為,所以外接球直徑.故該三棱錐的外接球表面積為.故選:D.【點睛】本題主要考查由三視圖還原幾何體,并計算其外接球的表面積,意在考查學生的直觀想象能力和數(shù)學運算能力,屬于基礎(chǔ)題.9、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構(gòu)建和的方程組求通項公式.10、B【解析】
根據(jù)分段函數(shù)的表達式求解即可.【詳解】由題.故選:B【點睛】本題主要考查了分段函數(shù)的求值,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
建立直角坐標系,得出的坐標,利用數(shù)量積的坐標表示得出,結(jié)合正弦函數(shù)的單調(diào)性得出的取值范圍.【詳解】取中點為,建立如下圖所示的直角坐標系則,設(shè),,則,則設(shè)點,則,則當,即時,取最大值當,即時,取最小值則的取值范圍是故答案為:【點睛】本題主要考查了利用數(shù)量積求參數(shù)以及求正弦型函數(shù)的最值,屬于較難題.12、.【解析】
由題意得出,當時,由,代入,化簡得出,利用倒數(shù)法求出的通項公式,從而得出的表達式,于是可求出的值.【詳解】當時,由題意可得,即,化簡得,得,兩邊取倒數(shù)得,,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,,,則,因此,,故答案為:.【點睛】本題考查數(shù)列極限的計算,同時也考查了數(shù)列通項的求解,在含的數(shù)列遞推式中,若作差法不能求通項時,可利用轉(zhuǎn)化為的遞推公式求通項,考查分析問題和解決問題的能力,綜合性較強,屬于中等題.13、(4,5)4.【解析】
根據(jù)所過定點與所過定點關(guān)于對稱可得,與的距離的最大值就是兩定點之間的距離.【詳解】∵直線:經(jīng)過定點,又兩直線關(guān)于點對稱,則兩直線經(jīng)過的定點也關(guān)于點對稱∴直線恒過定點,∴與的距離的最大值就是兩定點之間的距離,即為.故答案為:,.【點睛】本題考查了過兩條直線交點的直線系方程,屬于基礎(chǔ)題.14、【解析】
首先利用同角三角函數(shù)的基本關(guān)系求出,再利用正弦定理即可求解.【詳解】在中,,,即,,,即,,,,,即,,,即,,,由正弦定理得,,,故答案為:【點睛】本題考查了同角三角函數(shù)的基本關(guān)系以及正弦定理解三角形,需熟記公式,屬于基礎(chǔ)題.15、0【解析】
根據(jù)向量,,取模平方相減得到答案.【詳解】兩個等式平方相減得到:故答案為0【點睛】本題考查了向量的加減,模長,意在考查學生的計算能力.16、【解析】
觀察圖像可知每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.再利用規(guī)律找到行與行之間的遞推關(guān)系即可.【詳解】由圖像可得每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.故從第三行開始,每行的實心圓點數(shù)均為前兩行之和.即.故第1到第13行中實心圓點的個數(shù)分別為:.故答案為:【點睛】本題主要考查了遞推數(shù)列的實際運用,需要觀察求得行與行之間的實心圓點的遞推關(guān)系,屬于中等題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
計算出由三點共線解出即可.【詳解】解:,∵三點共線,∴,∴【點睛】本題考查3點共線的向量表示,屬于基礎(chǔ)題.18、(1);(2).【解析】試題分析:本題主要考查倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值等基礎(chǔ)知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.(Ⅰ)先利用倍角公式將降冪,再利用兩角和的正弦公式將化簡,使之化簡成的形式,最后利用計算函數(shù)的最小正周期;(Ⅱ)將的取值范圍代入,先求出的范圍,再數(shù)形結(jié)合得到三角函數(shù)的最小值.試題解析:(Ⅰ)∵,∴的最小正周期為.(Ⅱ)∵,∴.當,即時,取得最小值.∴在區(qū)間上的最小值為.考點:倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值.19、(Ⅰ)證明:見解析;(Ⅱ)見解析.【解析】試題分析:(Ⅰ)根據(jù),知與確定一個平面,連接,得到,,從而平面,證得.(Ⅱ)設(shè)的中點為,連,在,中,由三角形中位線定理可得線線平行,證得平面平面,進一步得到平面.試題解析:(Ⅰ)證明:因,所以與確定平面.連接,因為為的中點,所以,同理可得.又,所以平面,因為平面,所以.(Ⅱ)設(shè)的中點為,連.在中,因為是的中點,所以,又,所以.在中,因為是的中點,所以,又,所以平面平面,因為平面,所以平面.【考點】平行關(guān)系,垂直關(guān)系【名師點睛】本題主要考查直線與直線垂直、直線與平面平行.此類題目是立體幾何中的基本問題.解答本題,關(guān)鍵在于能利用已知的直線與直線、直線與平面、平面與平面的位置關(guān)系,通過嚴密推理,給出規(guī)范的證明.本題能較好地考查考生的空間想象能力、邏輯推理能力及轉(zhuǎn)化與化歸思想等.20、(1);(2)見解析【解析】
(1)先求出直線過定點,設(shè)圓的一般方程,由題意列方程組,即可求圓的方程;(2)由(1)可知:求得直線的斜率,根據(jù)對稱性求得點坐標,由在圓外,所以點不能作為直角三角形的頂點,分類討論,即可求得的值.【詳解】(1)直線的方程可化為,由解得∴定點的坐標為.設(shè)圓的方程為,則圓心則依題意有解得∴圓的方程為;(2)由(1)知圓的標準方程為,∴圓心,半徑.∵是直徑的兩個端點,∴圓心是與的中點,∵軸上的點在圓外,∴是銳角,即不是直角頂點.若是的直角頂點,則,得;若是的直角頂點,則,得.綜上所述,在軸上存在一點,使為直角三角形,或.【點睛】本題考查圓的方程的求法,直線與圓的位置關(guān)系,考查分類討論思想,屬于中檔題.21、(1)證明過程見詳解;(2);(3)存在實數(shù),使得數(shù)列為等差數(shù)列.【解析】
(1)先由題意得到,再由,得到,即可證明結(jié)論成立;(2)先由(1)求得,推出,利用累加法,即可求出數(shù)列的通項;(3)把數(shù)列an}、{bn}通項公式代入an+2bn,進而得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度跨境民間借款擔保及結(jié)算服務(wù)合同4篇
- 年度碳纖維預浸布戰(zhàn)略市場規(guī)劃報告
- 阻燃涂料課程設(shè)計
- 2025年度綜合交通樞紐沖孔樁建設(shè)勞務(wù)分包協(xié)議4篇
- 二零二五年度環(huán)保設(shè)備生產(chǎn)商免責聲明合同范本4篇
- 2025年度公園景區(qū)環(huán)境清潔及綠化養(yǎng)護服務(wù)協(xié)議3篇
- 硬幣分揀機課程設(shè)計
- 2025年度智能電網(wǎng)建設(shè)入股合作協(xié)議4篇
- 羊駝創(chuàng)意美術(shù)課程設(shè)計
- 2024版聘用總經(jīng)理合同范本
- (一模)臨汾市2025年高考考前適應(yīng)性訓練考試(一)語文試卷(含答案)
- 2024-2025學年滬科版數(shù)學七年級上冊期末綜合測試卷(一)(含答案)
- 2023年廣東省公務(wù)員錄用考試《行測》真題及答案解析
- 2024年公證遺產(chǎn)繼承分配協(xié)議書模板
- 燃氣經(jīng)營安全重大隱患判定標準課件
- 深圳小學英語單詞表(中英文)
- 護理質(zhì)量反饋內(nèi)容
- 抖音搜索用戶分析報告
- 鉆孔灌注樁技術(shù)規(guī)范
- 2023-2024學年北師大版必修二unit 5 humans and nature lesson 3 Race to the pole 教學設(shè)計
- 供貨進度計劃
評論
0/150
提交評論