山東省臨沭一中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第1頁
山東省臨沭一中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第2頁
山東省臨沭一中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第3頁
山東省臨沭一中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第4頁
山東省臨沭一中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省臨沭一中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“”是“、、”成等比數(shù)列的()條件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要2.如圖,設(shè),是平面內(nèi)相交的兩條數(shù)軸,,分別是與軸,軸正方向同向的單位向量,且,若向量,則把有序數(shù)對叫做向量在坐標(biāo)系中的坐標(biāo).假設(shè)在坐標(biāo)系中的坐標(biāo)為,則()A. B. C. D.3.函數(shù)f(x)=x?lnA. B.C. D.4.如圖,在三棱柱中,側(cè)棱垂直于底面,底面是邊長為2的正三角形,側(cè)棱長為3,則與平面所成的角為()A. B. C. D.5.已知函數(shù),其圖像相鄰的兩個對稱中心之間的距離為,且有一條對稱軸為直線,則下列判斷正確的是()A.函數(shù)的最小正周期為B.函數(shù)的圖象關(guān)于直線對稱C.函數(shù)在區(qū)間上單調(diào)遞增D.函數(shù)的圖像關(guān)于點對稱6.對變量有觀測數(shù)據(jù),得散點圖(1);對變量有觀測數(shù)據(jù)(,得散點圖(2),由這兩個散點圖可以判斷()A.變量與正相關(guān),與正相關(guān) B.變量與正相關(guān),與負(fù)相關(guān)C.變量與負(fù)相關(guān),與正相關(guān) D.變量與負(fù)相關(guān),與負(fù)相關(guān)7.已知點是直線上一動點,與是圓的兩條切線,為切點,則四邊形的最小面積為()A. B. C. D.8.某校進(jìn)行了一次消防安全知識競賽,參賽學(xué)生的得分經(jīng)統(tǒng)計得到如圖的頻率分布直方圖,若得分在的有60人,則參賽學(xué)生的總?cè)藬?shù)為()A.100 B.120 C.150 D.2009.已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是,接下來的兩項是,再接下來的三項是,依此類推,記此數(shù)列為,則()A.1 B.2 C.4 D.810.如圖,這是某校高一年級一名學(xué)生七次月考數(shù)學(xué)成績(滿分100分)的莖葉圖去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.6二、填空題:本大題共6小題,每小題5分,共30分。11.某扇形的面積為1,它的周長為4cm,那么扇形的圓心角的大小為____________.12.?dāng)?shù)列是等比數(shù)列,,,則的值是________.13.某幾何體是由一個正方體去掉一個三棱柱所得,其三視圖如圖所示.如果網(wǎng)格紙上小正方形的邊長為1,那么該幾何體的體積是___14.在上定義運(yùn)算,則不等式的解集為_____.15.一個封閉的正三棱柱容器,該容器內(nèi)裝水恰好為其容積的一半(如圖1,底面處于水平狀態(tài)),將容器放倒(如圖2,一個側(cè)面處于水平狀態(tài)),這時水面與各棱交點分別為E,F(xiàn)、,,則的值是__________.16.設(shè)扇形的半徑長為,面積為,則扇形的圓心角的弧度數(shù)是三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓過兩點,,且圓心在直線上.(1)求圓的標(biāo)準(zhǔn)方程;(2)求過點且與圓相切的直線方程.18.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.(Ⅰ)證明:BC1//平面A1CD;(Ⅱ)設(shè)AA1=AC=CB=2,AB=2,求三棱錐C一A1DE的體積.19.的內(nèi)角的對邊分別為,已知.(1)求角的大小;(2)若為銳角三角形,且,求面積的取值范圍.20.如圖,是正方形,是該正方形的中心,是平面外一點,底面,是的中點.求證:(1)平面;(2)平面平面.21.如圖1,ABCD為菱形,∠ABC=60°,△PAB是邊長為2的等邊三角形,點M為AB的中點,將△PAB沿AB邊折起,使平面PAB⊥平面ABCD,連接PC、PD,如圖2,(1)證明:AB⊥PC;(2)求PD與平面ABCD所成角的正弦值(3)在線段PD上是否存在點N,使得PB∥平面MC?若存在,請找出N點的位置;若不存在,請說明理由

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用充分必要條件直接推理即可【詳解】若“、、”成等比數(shù)列,則;成立反之,若“”,如果a=b=G=0則、、”不成等比數(shù)列,故選B.【點睛】本題考查充分必要條件的判定,熟記等比數(shù)列的性質(zhì)是關(guān)鍵,是基礎(chǔ)題2、D【解析】

可得.【詳解】向量,則.故選:.【點睛】本題主要考查了向量模的運(yùn)算和向量的數(shù)量積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.3、D【解析】

判斷函數(shù)的奇偶性排除選項,利用特殊點的位置排除選項即可.【詳解】函數(shù)f(x)=x?ln|x|是奇函數(shù),排除選項A,當(dāng)x=1e時,y=-1e,對應(yīng)點在故選:D.【點睛】本題考查函數(shù)的圖象的判斷,函數(shù)的奇偶性以及特殊點的位置是判斷函數(shù)的圖象的常用方法.4、A【解析】

取的中點,連接、,作,垂足為點,證明平面,于是得出直線與平面所成的角為,然后利用銳角三角函數(shù)可求出.【詳解】如下圖所示,取的中點,連接、,作,垂足為點,是邊長為的等邊三角形,點為的中點,則,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直線與平面所成的角為,易知,在中,,,,,,即直線與平面所成的角為,故選A.【點睛】本題考查直線與平面所成角的計算,求解時遵循“一作、二證、三計算”的原則,一作的是過點作面的垂線,有時也可以通過等體積法計算出點到平面的距離,利用該距離與線段長度的比值作為直線與平面所成角的正弦值,考查計算能力與推理能力,屬于中等題.5、C【解析】

本題首先可根據(jù)相鄰的兩個對稱中心之間的距離為來確定的值,然后根據(jù)直線是對稱軸以及即可確定的值,解出函數(shù)的解析式之后,通過三角函數(shù)的性質(zhì)求出最小正周期、對稱軸、單調(diào)遞增區(qū)間以及對稱中心,即可得出結(jié)果.【詳解】圖像相鄰的兩個對稱中心之間的距離為,即函數(shù)的周期為,由得,所以,又是一條對稱軸,所以,,得,又,得,所以.最小正周期,項錯誤;令,,得對稱軸方程為,,選項錯誤;由,,得單調(diào)遞增區(qū)間為,,項中的區(qū)間對應(yīng),故正確;由,,得對稱中心的坐標(biāo)為,,選項錯誤,綜上所述,故選C.【點睛】本題考查根據(jù)三角函數(shù)圖像性質(zhì)來求三角函數(shù)解析式以及根據(jù)三角函數(shù)解析式得出三角函數(shù)的相關(guān)性質(zhì),考查對函數(shù)的相關(guān)性質(zhì)的理解,考查推理能力,是中檔題.6、C【解析】

根據(jù)增大時的變化趨勢可確定結(jié)果.【詳解】圖(1)中,隨著的增大,的變化趨勢是逐漸在減小,因此變量與負(fù)相關(guān);圖(2)中,隨著的增大,的變化趨勢是逐漸在增大,因此變量與正相關(guān).故選:【點睛】本題考查根據(jù)散點圖判斷相關(guān)關(guān)系的問題,屬于基礎(chǔ)題.7、A【解析】

利用當(dāng)與直線垂直時,取最小值,并利用點到直線的距離公式計算出的最小值,然后利用勾股定理計算出、的最小值,最后利用三角形的面積公式可求出四邊形面積的最小值.【詳解】如下圖所示:由切線的性質(zhì)可知,,,且,,當(dāng)取最小值時,、也取得最小值,顯然當(dāng)與直線垂直時,取最小值,且該最小值為點到直線的距離,即,此時,,四邊形面積的最小值為,故選A.【點睛】本題考查直線與圓的位置關(guān)系,考查切線長的計算以及四邊形的面積,本題在求解切線長的最小值時,要抓住以下兩點:(1)計算切線長應(yīng)利用勾股定理,即以點到圓心的距離為斜邊,切線長與半徑為兩直角邊;(2)切線長取最小值時,點到圓心的距離也取到最小值.8、C【解析】

根據(jù)頻率分布直方圖求出得分在的頻率,即可得解.【詳解】根據(jù)頻率分布直方圖可得:得分在的頻率0.35,得分在的頻率0.3,得分在的頻率0.2,得分在的頻率0.1,所以得分在的頻率0.05,得分在的頻率為0.4,有60人,所以參賽學(xué)生的總?cè)藬?shù)為60÷0.4=150人.故選:C【點睛】此題考查根據(jù)頻率分布直方圖求某組的頻率,根據(jù)頻率分布直方圖的特征計算小矩形的面積,根據(jù)總面積之和為1計算未知數(shù),結(jié)合頻率頻數(shù)計算總?cè)藬?shù).9、C【解析】

將數(shù)列分組:第1組為,第2組為,第3組為,,根據(jù),進(jìn)而得到數(shù)列的2017項為,數(shù)列的第2018項為,數(shù)列的第2019項為,即可求解.【詳解】將所給的數(shù)列分組:第1組為,第2組為,第3組為,,則數(shù)列的前n組共有項,又由,所以數(shù)列的前63組共有2016項,所以數(shù)列的2017項為,數(shù)列的第2018項為,數(shù)列的第2019項為,所以故選:C.【點睛】本題主要考查了等差數(shù)列的前n項和公式的應(yīng)用,其中解答中根據(jù)所給數(shù)列合理分組,結(jié)合等差數(shù)列的前n項和求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.10、D【解析】

去掉一個最高分和一個最低分后,所剩數(shù)據(jù)為82,84,84,86,89,由此能求出所剩數(shù)據(jù)的平均數(shù)和方差.【詳解】平均數(shù),方差,選D.【點睛】本題考查所剩數(shù)據(jù)的平均數(shù)和方差的求法,考查莖葉圖、平均數(shù)、方差的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)扇形的面積和周長列方程組解得半徑和弧長,再利用弧長公式可求得結(jié)果.【詳解】設(shè)扇形的半徑為,弧長為,圓心角為,則,解得,所以.故答案為:【點睛】本題考查了扇形的面積公式,考查了扇形中弧長公式,屬于基礎(chǔ)題.12、【解析】

由題得計算得解.【詳解】由題得,所以.因為等比數(shù)列同號,所以.故答案為:【點睛】本題主要考查等比數(shù)列的性質(zhì)和等比中項的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.13、6【解析】

先作出幾何體圖形,再根據(jù)幾何體的體積等于正方體的體積減去三棱柱的體積計算.【詳解】幾何體如圖所示:去掉的三棱柱的高為2,底面面積是正方體底面積的,所以三棱柱的體積:所以幾何體的體積:【點睛】本題考查三視圖與幾何體的體積.關(guān)鍵是作出幾何體的圖形,方法:先作出正方體的圖形,再根據(jù)三視圖“切”去多余部分.14、【解析】

根據(jù)定義運(yùn)算,把化簡得,求出其解集即可.【詳解】因為,所以,即,得,解得:故答案為:.【點睛】本題考查新定義,以及解一元二次不等式,考查運(yùn)算的能力,屬于基礎(chǔ)題.15、【解析】

設(shè),則,由題意得:,由此能求出的值.【詳解】設(shè),則,由題意得:,解得,.故答案為:.【點睛】本題考查兩線段比值的求法、三棱柱的體積等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.16、2【解析】試題分析:設(shè)扇形圓心角的弧度數(shù)為α,則扇形面積為S=αr2=α×22=4解得:α=2考點:扇形面積公式.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)設(shè)圓心坐標(biāo)為,根據(jù),求得,進(jìn)而得到圓的方程;(2)由在圓上,則,得到,求得,進(jìn)而求得圓的切線方程.【詳解】(1)由題意,圓心在直線上,設(shè)圓心坐標(biāo)為,由,即,所以,圓心,半徑,圓的標(biāo)準(zhǔn)方程為.(2)設(shè)切線方程為,因為在圓上,所以,所以,又,所以,所以切線方程為,即,所以過的切線方程.【點睛】本題主要考查了圓的方程的求解,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟記圓的方程的形式,以及圓的切線的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18、(Ⅰ)見解析(Ⅱ)【解析】試題分析:(Ⅰ)連接AC1交A1C于點F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據(jù)直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進(jìn)而求得S△A1DE的值,再根據(jù)三棱錐C-A1DE的體積為?S△A1DE?CD,運(yùn)算求得結(jié)果試題解析:(1)證明:連結(jié)AC1交A1C于點F,則F為AC1中點又D是AB中點,連結(jié)DF,則BC1∥DF.3分因為DF?平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱錐C﹣A1DE的體積為:==1.12分考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積19、(1)(2)【解析】

(1)利用正弦定理邊角互化的思想以及兩角和的正弦公式、三角形的內(nèi)角和定理以及誘導(dǎo)公式求出的值,結(jié)合角的范圍求出角的值;(2)由三角形的面積公式得,由正弦定理結(jié)合內(nèi)角和定理得出,利用為銳角三角形得出的取值范圍,可求出的范圍,進(jìn)而求出面積的取值范圍.【詳解】(1),由正弦定理邊角互化思想得,所以,,,,,;(2)由題設(shè)及(1)知的面積.由正弦定理得.由于為銳角三角形,故,由(1)知,所以,故,從而.因此面積的取值范圍是.【點睛】本題考查正弦定理解三角形以及三角形面積的取值范圍的求解,在解三角形中,等式中含有邊有角,且邊的次數(shù)相等時,可以利用邊角互化的思想求解,一般優(yōu)先是邊化為角的正弦值,求解三角形中的取值范圍問題時,利用正弦定理結(jié)合三角函數(shù)思想進(jìn)行求解,考查計算能力,屬于中等題.20、(1)見解析;(2)見解析.【解析】

(1)連接,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論