版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省漳州市東山第二中學(xué)2025屆高一下數(shù)學(xué)期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,則異面直線BD與CE所成的角為()A. B. C. D.2.若向量滿足:與的夾角為,且,則的最小值是()A.1 B. C. D.23.若將函數(shù)的圖象向右平移個單位,所得圖象關(guān)于軸對稱,則的最小值是()A. B. C. D.4.設(shè)數(shù)列的前項和為,且,則數(shù)列的前10項的和是()A.290 B. C. D.5.設(shè)變量、滿足約束條件,則目標函數(shù)的最大值為()A.2 B.3 C.4 D.96.把一塊長是10,寬是8,高是6的長方形木料削成一個體積最大的球,這個球的體積等于()A. B.480 C. D.7.已知函數(shù)在時取最大值,在是取最小值,則以下各式:①;②;③可能成立的個數(shù)是()A.0 B.1 C.2 D.38.已知,,則()A. B. C. D.9.若數(shù)列,若,則在下列數(shù)列中,可取遍數(shù)列前項值的數(shù)列為()A. B. C. D.10.已知角α的終邊上有一點P(sin,cos),則tanα=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)為等差數(shù)列的前n項和,,則________.12.已知是內(nèi)的一點,,,則_______;若,則_______.13.在△ABC中,已知30,則B等于__________.14.將邊長為2的正沿邊上的高折成直二面角,則三棱錐的外接球的表面積為.15.已知數(shù)列滿足且,則____________.16.某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件,為了了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣的方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.高考改革是教育體制改革中的重點領(lǐng)域和關(guān)鍵環(huán)節(jié),全社會極其關(guān)注.近年來,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目語文、數(shù)學(xué)、外語,“”指考生根據(jù)本人興趣特長和擬報考學(xué)校及專業(yè)的要求,從物理、化學(xué)、生物、歷史、政治、地理六科中選擇門作為選考科目,其中語、數(shù)、外三門課各占分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學(xué)生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體的,以此賦分分、分、分、分.為了讓學(xué)生們體驗“賦分制”計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學(xué)生選三科計算成績),已知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學(xué)成績(滿分分)莖葉圖如下圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.(1)求小明物理成績的最后得分;(2)若小明的化學(xué)成績最后得分為分,求小明的原始成績的可能值;(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學(xué)的概率.18.在中,,.(1)求角B的大??;(2)的面積,求的邊BC的長.19.已知是的內(nèi)角,分別是角的對邊.若,(1)求角的大?。唬?)若,的面積為,為的中點,求20.已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.(1)求k的取值范圍;(2)若=12,其中O為坐標原點,求|MN|.21.從代號為A、B、C、D、E的5個人中任選2人(1)列出所有可能的結(jié)果;(2)若A、B、C三人為男性,D、E兩人為女性,求選出的2人中不全為男性的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
以D為原點,DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標系,利用向量法能求出異面直線BD與CE所成的角.【詳解】∵平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,∴以D為原點,DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標系,設(shè)AB=1,則B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),設(shè)異面直線BD與CE所成的角為θ,則cosθ,∴θ.∴異面直線BD與CE所成的角為.故選:C.【點評】本題考查異面直線所成角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.2、D【解析】
設(shè)作圖,由可知點在以線段為直徑的圓上,由圖可知,,代入所求不等式利用圓的特征化簡即可.【詳解】如圖,設(shè),取線段的中點為,連接OE交圓于點D,因為即,所以點在以線段為直徑的圓上(E為圓心),且,于是.故選:D【點睛】本題考查向量的線性運算,垂直向量的數(shù)量積表示,幾何圖形在向量運算中的應(yīng)用,屬于中檔題.3、B【解析】
把函數(shù)的解析式利用輔助角公式化成余弦型函數(shù)解析式形式,然后求出向右平移個單位后函數(shù)的解析式,根據(jù)題意,利用余弦型函數(shù)的性質(zhì)求解即可.【詳解】,該函數(shù)求出向右平移個單位后得到新函數(shù)的解析式為:,由題意可知:函數(shù)的圖象關(guān)于軸對稱,所以有當時,有最小值,最小值為.故選:B【點睛】本題考查了余弦型函數(shù)的圖象平移,考查了余弦型函數(shù)的性質(zhì),考查了數(shù)學(xué)運算能力.4、C【解析】
由得為等差數(shù)列,求得,得利用裂項相消求解即可【詳解】由得,當時,,整理得,所以是公差為4的等差數(shù)列,又,所以,從而,所以,數(shù)列的前10項的和.故選.【點睛】本題考查遞推關(guān)系求通項公式,等差數(shù)列的通項及求和公式,裂項相消求和,熟記公式,準確得是等差數(shù)列是本題關(guān)鍵,是中檔題5、D【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結(jié)論.【詳解】畫出滿足約束條件的可行域,如圖,畫出可行域,,,,平移直線,由圖可知,直線經(jīng)過時目標函數(shù)有最大值,的最大值為9.故選D.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.6、A【解析】
由題意知,此球是棱長為6的正方體的內(nèi)切球,根據(jù)其幾何特征知,此球的直徑與正方體的棱長是相等的,故可得球的直徑為6,再由球的體積公式求解即可.【詳解】解:由已知可得球的直徑為6,故半徑為3,其體積是,故選:.【點睛】本題考查長方體內(nèi)切球的幾何特征,以及球的體積公式,屬于基礎(chǔ)題.7、A【解析】
由余弦函數(shù)性質(zhì)得,(),解出后,計算,可知三個等式都不可能成立.【詳解】由題意,(),解得,,,,三個都不可能成立,正確個數(shù)為1.故選A.【點睛】本題考查余弦函數(shù)的圖象與性質(zhì),解題時要注意對中的整數(shù)要用不同的字母表示,否則可能出現(xiàn)遺漏,出現(xiàn)錯誤.8、A【解析】
由,代入運算即可得解.【詳解】解:因為,,所以.故選:A.【點睛】本題考查了兩角差的正切公式,屬基礎(chǔ)題.9、D【解析】
推導(dǎo)出是以6為周期的周期數(shù)列,從而是可取遍數(shù)列前6項值的數(shù)列.【詳解】數(shù)列,,,,,,,,,是以6為周期的周期數(shù)列,是可取遍數(shù)列前6項值的數(shù)列.故選:D.【點睛】本題考查數(shù)列的周期性與三角函數(shù)知識的交會,考查基本運算求解能力,求解時注意函數(shù)與方程思想的應(yīng)用.10、A【解析】
由題意利用任意角的三角函數(shù)的定義,求得tanα的值.【詳解】解:∵角α的終邊上有一點P(sin,cos),∴x=sin,y=cos,∴則tanα,故選A.【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、54.【解析】
設(shè)首項為,公差為,利用等差數(shù)列的前n項和公式列出方程組,解方程求解即可.【詳解】設(shè)首項為,公差為,由題意,可得解得所以.【點睛】本題主要考查了等差數(shù)列的前n項和公式,解方程的思想,屬于中檔題.12、【解析】
對式子兩邊平方,再利用向量的數(shù)量積運算即可;式子兩邊分別與向量,進行數(shù)量積運算,得到關(guān)于的方程組,解方程組即可得答案.【詳解】∵,∴;∵,∴解得:,∴.故答案為:;.【點睛】本題考查向量數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意將向量等式轉(zhuǎn)化為數(shù)量關(guān)系的方法.13、【解析】
根據(jù)三角形正弦定理得到角,再由三角形內(nèi)角和關(guān)系得到結(jié)果.【詳解】根據(jù)三角形的正弦定理得到,故得到角,當角時,有三角形內(nèi)角和為,得到,當角時,角故答案為【點睛】在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.14、【解析】
解:根據(jù)題意可知三棱錐B﹣ACD的三條側(cè)棱BD、DC、DA兩兩互相垂直,所以它的外接球就是它擴展為長方體的外接球,∵長方體的對角線的長為:,∴球的直徑是,半徑為,∴三棱錐B﹣ACD的外接球的表面積為:4π5π.故答案為5π考點:外接球.15、【解析】
由題得為等差數(shù)列,得,則可求【詳解】由題:為等差數(shù)列且首項為2,則,所以.故答案為:2550【點睛】本題考查等差數(shù)列的定義,準確計算是關(guān)鍵,是基礎(chǔ)題16、13【解析】(解法1)由分層抽樣得,解得n=13.(解法2)從甲乙丙三個車間依次抽取a,b,c個樣本,則120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)70分(2)(3)【解析】
(1)先求出此次考試物理成績落在內(nèi)的頻率,再由小明的物理成績即可得出結(jié)果;(2)根據(jù)選考科目按考生成績從高到低排列,按照占總體的,以此賦分分、60分、50分、40分,結(jié)合莖葉圖中數(shù)據(jù),即可得出結(jié)果;(3)先記物理、化學(xué)、生物、歷史、地理、政治依次為,用列舉法列舉出小明的所有可能選法,再列舉出小明此次考試選考科目包括化學(xué)的選法,基本事件的個數(shù)之比就是所求概率.【詳解】解:(1),此次考試物理成績落在內(nèi)的頻率依次為,概率之和為小明的物理成績?yōu)榉?,大于?小明物理成績的最后得分為分.(2)因為40名學(xué)生中,賦分分的有人,這六人成績分別為89,91,92,93,93,96;賦分分的有人,其中包含80多分的共10人,70多分的有4人,分數(shù)分別為;因為小明的化學(xué)成績最后得分為分,且小明化學(xué)多分,所以小明的原始成績的可能值為;(3)記物理、化學(xué)、生物、歷史、地理、政治依次為,小明的所有可能選法有:共種,其中包括化學(xué)的有共種,若小明必選物理,其他兩科在剩下的五科中任選,所選科目包括化學(xué)的概率為.【點睛】本題主要考查頻率分布直方圖與莖葉圖,以及古典概型,熟記古典概型的概率計算公式即可求解,屬于常考題型.18、(1);(2)【解析】
(1)由條件可,展開計算代入,即可得;(2)先利用正弦定理求出,再利用面積可得,解方程可得,再利用余弦定理可求得邊BC的長.【詳解】解:(1)在中,,則,即,整理得,又,,(2)由正弦定理得,又,即,所以,,解得,即.【點睛】本題考查了正弦定理,余弦定理的應(yīng)用,考查了面積公式,是基礎(chǔ)題.19、(1)(2)【解析】
(1)由,可將,轉(zhuǎn)化為,,代入原式,根據(jù)正弦定理可得,結(jié)合余弦定理,及,可得角C的大小。(2)因為,所以。所以為等腰三角形,根據(jù)面積為,可得,在,,,,結(jié)合余弦定理,即可求解?!驹斀狻浚?)由得由正弦定理,得,即所以又,則(2)因為,所以.所以為等腰三角形,且頂角.因為所以.在中,,,,所以解得.【點睛】本題考查同角三角函數(shù)的基本關(guān)系,正弦定理,余弦定理,求面積公式,綜合性較強,考查學(xué)生分析推理,計算化簡的能力,屬基礎(chǔ)題。20、(3);(3)3.【解析】試題分析:(3)由題意可得,直線l的斜率存在,用點斜式求得直線l的方程,根據(jù)圓心到直線的距離
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度精密產(chǎn)品模具設(shè)計與委托加工服務(wù)合同4篇
- 2025年休閑公園場地租賃合同印花稅繳納規(guī)范2篇
- 專業(yè)發(fā)藝師2024服務(wù)協(xié)議樣本版A版
- 2025年度智慧農(nóng)業(yè)園區(qū)場商位租賃與農(nóng)產(chǎn)品上行合同4篇
- 專用消防系統(tǒng)增補協(xié)議樣本2024版A版
- 2025年度多功能鏟車租賃服務(wù)合同范本4篇
- 2025年度文化創(chuàng)意產(chǎn)業(yè)合作開發(fā)合同7篇
- 2025年度可打印PAD與智能教室系統(tǒng)配套合同3篇
- 2024蔬菜種植合作社與社區(qū)團購平臺合作協(xié)議范本3篇
- 2025年度拆伙協(xié)議書范本下載4篇
- 2024年職工普法教育宣講培訓(xùn)課件
- 金蛇納瑞企業(yè)2025年會慶典
- 安保服務(wù)評分標準
- T-SDLPA 0001-2024 研究型病房建設(shè)和配置標準
- (人教PEP2024版)英語一年級上冊Unit 1 教學(xué)課件(新教材)
- 全國職業(yè)院校技能大賽高職組(市政管線(道)數(shù)字化施工賽項)考試題庫(含答案)
- 2024胃腸間質(zhì)瘤(GIST)診療指南更新解讀 2
- 光儲電站儲能系統(tǒng)調(diào)試方案
- 2024年二級建造師繼續(xù)教育題庫及答案(500題)
- 小學(xué)數(shù)學(xué)二年級100以內(nèi)連加連減口算題
- 建設(shè)單位如何做好項目管理
評論
0/150
提交評論