北京市陳經(jīng)綸學(xué)校2025屆數(shù)學(xué)高一下期末考試試題含解析_第1頁(yè)
北京市陳經(jīng)綸學(xué)校2025屆數(shù)學(xué)高一下期末考試試題含解析_第2頁(yè)
北京市陳經(jīng)綸學(xué)校2025屆數(shù)學(xué)高一下期末考試試題含解析_第3頁(yè)
北京市陳經(jīng)綸學(xué)校2025屆數(shù)學(xué)高一下期末考試試題含解析_第4頁(yè)
北京市陳經(jīng)綸學(xué)校2025屆數(shù)學(xué)高一下期末考試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京市陳經(jīng)綸學(xué)校2025屆數(shù)學(xué)高一下期末考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.向量,,若,則()A.2 B. C. D.2.已知數(shù)列共有項(xiàng),滿(mǎn)足,且對(duì)任意、,有仍是該數(shù)列的某一項(xiàng),現(xiàn)給出下列個(gè)命題:(1);(2);(3)數(shù)列是等差數(shù)列;(4)集合中共有個(gè)元素.則其中真命題的個(gè)數(shù)是()A. B. C. D.3.一個(gè)圓柱的軸截面是正方形,其側(cè)面積與一個(gè)球的表面積相等,那么這個(gè)圓柱的體積與這個(gè)球的體積之比為()A.1:3 B.3:1 C.2:3 D.3:24.在等比數(shù)列中,則()A.81 B. C. D.2435.已知為的三個(gè)內(nèi)角的對(duì)邊,,的面積為2,則的最小值為().A. B. C. D.6.一枚骰子連續(xù)投兩次,則兩次向上點(diǎn)數(shù)均為1的概率是()A. B. C. D.7.若,則下列不等式中不正確的是()A. B. C. D.8.已知如圖正方體中,為棱上異于其中點(diǎn)的動(dòng)點(diǎn),為棱的中點(diǎn),設(shè)直線為平面與平面的交線,以下關(guān)系中正確的是()A. B.C.平面 D.平面9.已知角的終邊經(jīng)過(guò)點(diǎn),則()A. B. C. D.10.在中,角,,所對(duì)的邊分別為,,,若,,,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的公差為2,若成等比數(shù)列,則________.12.在等比數(shù)列中,,,則______________.13.函數(shù)的定義域?yàn)開(kāi)_______14.在直角坐標(biāo)系中,已知任意角以坐標(biāo)原點(diǎn)為頂點(diǎn),以軸的非負(fù)半軸為始邊,若其終邊經(jīng)過(guò)點(diǎn),且,定義:,稱(chēng)“”為“的正余弦函數(shù)”,若,則_________.15.將邊長(zhǎng)為2的正沿邊上的高折成直二面角,則三棱錐的外接球的表面積為.16.若,則的值為_(kāi)______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.設(shè)全集是實(shí)數(shù)集,集合,.(1)若,求實(shí)數(shù)的取值范圍;(2)若,求.18.在中,成等差數(shù)列,分別為的對(duì)邊,并且,,求.19.在平面直角坐標(biāo)系中,已知向量,,.(1)若,求的值;(2)若與的夾角為,求的值.20.已知直線:,一個(gè)圓的圓心在軸上且該圓與軸相切,該圓經(jīng)過(guò)點(diǎn).(1)求圓的方程;(2)求直線被圓截得的弦長(zhǎng).21.已知,,,均為銳角,且.(1)求的值;(2)若,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】試題分析:,,得得,故選C.考點(diǎn):向量的垂直運(yùn)算,向量的坐標(biāo)運(yùn)算.2、D【解析】

對(duì)任意的、,有仍是該數(shù)列的某一項(xiàng),可得出是該數(shù)列中的項(xiàng),由于,可得,即,以此類(lèi)推即可判斷出結(jié)論.【詳解】對(duì)任意、,有仍是該數(shù)列的某一項(xiàng),,當(dāng)時(shí),則,必有,即,而或.若,則,而、、,舍去;若,此時(shí),,同理可得.可得數(shù)列為:、、、、.綜上可得:(1);(2);(3)數(shù)列是等差數(shù)列;(4)集合,該集合中共有個(gè)元素.因此,(1)(2)(3)(4)都正確.故選:D.【點(diǎn)睛】本題考查有關(guān)數(shù)列命題真假的判斷,涉及數(shù)列的新定義,考查推理能力與分類(lèi)討論思想的應(yīng)用,屬于中等題.3、D【解析】

設(shè)圓柱的底面半徑為,利用圓柱側(cè)面積公式與球的表面積公式建立關(guān)系式,算出球的半徑,再利用圓柱與球的體積公式加以計(jì)算,可得所求體積之比.【詳解】設(shè)圓柱的底面半徑為,軸截面正方形邊長(zhǎng),則,可得圓柱的側(cè)面積,再設(shè)與圓柱表面積相等的球半徑為,則球的表面積,解得,因此圓柱的體積為,球的體積為,因此圓柱的體積與球的體積之比為.故選:D.【點(diǎn)睛】本題主要考查了圓柱的側(cè)面積和體積公式,以及球的表面積和體積公式的應(yīng)用,其中解答中熟記公式,合理計(jì)算半徑之間的關(guān)系是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、A【解析】解:因?yàn)榈缺葦?shù)列中,則,選A5、D【解析】

運(yùn)用三角形面積公式和余弦定理,結(jié)合三角函數(shù)的輔助角公式和正弦型函數(shù)的值域最后可求出的最小值.【詳解】因?yàn)椋?,即,令,可得,于是有,因此,即,所以的最小值為,故本題選D.【點(diǎn)睛】本題考查了余弦定理、三角形面積公式,考查了輔助角公式,考查了數(shù)學(xué)運(yùn)算能力.6、D【解析】

連續(xù)投兩次骰子共有36種,求出滿(mǎn)足情況的個(gè)數(shù),即可求解.【詳解】一枚骰子投一次,向上的點(diǎn)數(shù)有6種,則連續(xù)投兩次骰子共有36種,兩次向上點(diǎn)數(shù)均為1的有1種情況,概率為.故選:D.【點(diǎn)睛】本題考查古典概型的概率,屬于基礎(chǔ)題.7、C【解析】

,可得,則根據(jù)不等式的性質(zhì)逐一分析選項(xiàng),A:,,所以成立;B:,則,根據(jù)基本不等式以及等號(hào)成立的條件則可判斷;C:且,根據(jù)可乘性可知結(jié)果;D:,根據(jù)乘方性可判斷結(jié)果.【詳解】A:由題意,不等式,可得,則,,所以成立,所以A是正確的;B:由,則,所以,因?yàn)?,所以等?hào)不成立,所以成立,所以B是正確的;C:由且,根據(jù)不等式的性質(zhì),可得,所以C不正確;D:由,可得,所以D是正確的,故選:C.【點(diǎn)睛】本題考查不等式的性質(zhì),不等式等號(hào)成立的條件,熟記不等式的性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.8、C【解析】

根據(jù)正方體性質(zhì),以及線面平行、垂直的判定以及性質(zhì)定理即可判斷.【詳解】因?yàn)樵谡襟w中,,且平面,平面,所以平面,因?yàn)槠矫?,且平面平面,所以有,而,則與不平行,故選項(xiàng)不正確;若,則,顯然與不垂直,矛盾,故選項(xiàng)不正確;若平面,則平面,顯然與正方體的性質(zhì)矛盾,故不正確;而因?yàn)槠矫?,平面,所以有平面,所以選項(xiàng)C正確,.【點(diǎn)睛】本題考查了線線、線面平行與垂直的關(guān)系判斷,屬于中檔題.9、C【解析】

首先根據(jù)題意求出,再根據(jù)正弦函數(shù)的定義即可求出的值.【詳解】,.故選:C【點(diǎn)睛】本題主要考查正弦函數(shù)的定義,屬于簡(jiǎn)單題.10、B【解析】

先利用面積公式得到,再利用余弦定理得到【詳解】余弦定理:故選B【點(diǎn)睛】本題考查了面積公式和余弦定理,意在考查學(xué)生的計(jì)算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,求出a1,即可求出a1.【詳解】∵等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案為-2..【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列的通項(xiàng),考查學(xué)生的計(jì)算能力,屬基礎(chǔ)題..12、1【解析】

根據(jù)已知兩項(xiàng)求出數(shù)列的公比,然后根據(jù)等比數(shù)列的通項(xiàng)公式進(jìn)行求解即可.【詳解】∵a1=1,a5=4∴公比∴∴該等比數(shù)列的通項(xiàng)公式a3=11=1故答案為:1.【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式,一般利用基本量的思想,屬于基礎(chǔ)題.13、【解析】

根據(jù)反余弦函數(shù)的定義,可得函數(shù)滿(mǎn)足,即可求解.【詳解】由題意,根據(jù)反余弦函數(shù)的定義,可得函數(shù)滿(mǎn)足,解得,即函數(shù)的定義域?yàn)?故答案為:【點(diǎn)睛】本題主要考查了反余弦函數(shù)的定義的應(yīng)用,其中解答中熟記反余弦函數(shù)的定義,列出不等式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】試題分析:根據(jù)正余弦函數(shù)的定義,令,則可以得出,即.可以得出,解得,.那么,,所以故本題正確答案為.考點(diǎn):三角函數(shù)的概念.15、【解析】

解:根據(jù)題意可知三棱錐B﹣ACD的三條側(cè)棱BD、DC、DA兩兩互相垂直,所以它的外接球就是它擴(kuò)展為長(zhǎng)方體的外接球,∵長(zhǎng)方體的對(duì)角線的長(zhǎng)為:,∴球的直徑是,半徑為,∴三棱錐B﹣ACD的外接球的表面積為:4π5π.故答案為5π考點(diǎn):外接球.16、【解析】

把已知等式展開(kāi)利用二倍角余弦公式及兩角和的余弦公式,整理后兩邊平方求解.【詳解】解:由,得,,則,兩邊平方得:,即.故答案為.【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn)求值,考查倍角公式的應(yīng)用,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或(2)當(dāng)時(shí),;當(dāng)時(shí),【解析】

(1)若,則或,解得實(shí)數(shù)的取值范圍;(2)若則,結(jié)合交集定義,分類(lèi)討論可得.【詳解】解:(1)若,則或,即或.所以的取值范圍為或.(2)∵,則且,∴.當(dāng)時(shí),;當(dāng)時(shí),.【點(diǎn)睛】本題考查集合的交集運(yùn)算,元素與元素的關(guān)系,分類(lèi)討論思想,屬于中檔題.18、或.【解析】

先算出,從而得到,也就是,結(jié)合面積得到,再根據(jù)余弦定理可得,故可解得的大小.【詳解】∵成等差數(shù)列,∴,又,∴,∴.所以,所以,①又,∴.②由①②,得,,而由余弦定理可知∴即.③聯(lián)立③與②解得或,綜上,或.【點(diǎn)睛】三角形中共有七個(gè)幾何量(三邊三角以及外接圓的半徑),一般地,知道其中的三個(gè)量(除三個(gè)角外),可以求得其余的四個(gè)量.(1)如果知道三邊或兩邊及其夾角,用余弦定理;(2)如果知道兩邊即一邊所對(duì)的角,用正弦定理(也可以用余弦定理求第三條邊);(3)如果知道兩角及一邊,用正弦定理.19、(1)1(2)【解析】

(1).若,則,結(jié)合三角函數(shù)的關(guān)系式即可求的值;

(2).若與的夾角為,利用向量的數(shù)量積的坐標(biāo)公式進(jìn)行求解即可求的值.【詳解】(1)由,則即,所以所以(2),又與的夾角為,則即即由,則所以,即【點(diǎn)睛】本題主要考查向量數(shù)量積的定義和坐標(biāo)公式的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.20、(1);(2).【解析】

(1)由題意設(shè)圓心,半徑,將點(diǎn)代入圓C的方程可求得a,可得圓的方程;(2)求出圓心C到直線l的距離d,利用勾股定理求出l被圓C所截得弦長(zhǎng).【詳解】(1)∵圓心在軸上且該圓與軸相切,∴設(shè)圓心,半徑,,設(shè)圓的方程為,將點(diǎn)代入得,∴,∴所求圓的方程為.(2)∵圓心到直線:的距離

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論