2025屆廣東省佛山市南海區(qū)數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第1頁
2025屆廣東省佛山市南海區(qū)數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第2頁
2025屆廣東省佛山市南海區(qū)數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第3頁
2025屆廣東省佛山市南海區(qū)數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第4頁
2025屆廣東省佛山市南海區(qū)數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆廣東省佛山市南海區(qū)數(shù)學(xué)高一下期末質(zhì)量檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在平面直角坐標(biāo)系中,已知四邊形是平行四邊形,,,則()A. B. C. D.2.已知函數(shù)在上是減函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.3.已知三角形ABC,如果,則該三角形形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上選項均有可能4.在等比數(shù)列中,,,則()A.140 B.120 C.100 D.805.點(diǎn)關(guān)于直線對稱的點(diǎn)的坐標(biāo)是()A. B. C. D.6.在如圖所示的莖葉圖中,若甲組數(shù)據(jù)的眾數(shù)為11,乙組數(shù)據(jù)的中位數(shù)為9,則()A.6 B.5 C.4 D.37.函數(shù)的定義域是(

)A. B. C. D.8.若、為異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交9.設(shè)等比數(shù)列的公比為,其前項和為,前項之積為,并且滿足條件:,,,下列結(jié)論中正確的是()A. B.C.是數(shù)列中的最大值 D.?dāng)?shù)列無最小值10.取一根長度為的繩子,拉直后在任意位置剪斷,則剪得兩段繩有一段長度不小于的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.等差數(shù)列滿足,則其公差為__________.12.某住宅小區(qū)有居民萬戶,從中隨機(jī)抽取戶,調(diào)查是否安裝寬帶,調(diào)查結(jié)果如下表所示:寬帶租戶業(yè)主已安裝未安裝則該小區(qū)已安裝寬帶的居民估計有______戶.13.函數(shù)的定義域?yàn)開___________.14.用數(shù)學(xué)歸納法證明時,從“到”,左邊需增乘的代數(shù)式是___________.15.若方程表示圓,則實(shí)數(shù)的取值范圍是______.16.已知為的三個內(nèi)角A,B,C的對邊,向量,.若,且,則B=三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,某海輪以30海里/小時的速度航行,在A點(diǎn)測得海面上油井P在南偏東,向北航行40分鐘后到達(dá)點(diǎn),測得油井P在南偏東,海輪改為北偏東的航向再行駛80分鐘到達(dá)C點(diǎn),求P,C間的距離.18.的內(nèi)角所對邊分別為,已知.(1)求;(2)若,,求的面積.19.如圖,已知三棱柱的側(cè)棱垂直于底面,,,點(diǎn),分別為和的中點(diǎn).(1)若,求三棱柱的體積;(2)證明:平面;(3)請問當(dāng)為何值時,平面,試證明你的結(jié)論.20.設(shè)向量.(Ⅰ)若與垂直,求的值;(Ⅱ)求的最小值.21.在中,內(nèi)角所對的邊分別為.已知,.(I)求的值;(II)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】因?yàn)樗倪呅问瞧叫兴倪呅危?,所以,故選D.考點(diǎn):1、平面向量的加法運(yùn)算;2、平面向量數(shù)量積的坐標(biāo)運(yùn)算.2、C【解析】

根據(jù)復(fù)合函數(shù)單調(diào)性,結(jié)合對數(shù)型函數(shù)的定義域列不等式組,解不等式組求得的取值范圍.【詳解】由于的底數(shù)為,而函數(shù)在上是減函數(shù),根據(jù)復(fù)合函數(shù)單調(diào)性同增異減可知,結(jié)合對數(shù)型函數(shù)的定義域得,解得.故選:C【點(diǎn)睛】本小題主要考查根據(jù)對數(shù)型復(fù)合函數(shù)單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.3、B【解析】

由正弦定理化簡已知可得:,由余弦定理可得,可得為鈍角,即三角形的形狀為鈍角三角形.【詳解】由正弦定理,,可得,化簡得,由余弦定理可得:,又,為鈍角,即三角形為鈍角三角形.故選:B.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.4、D【解析】

,計算出,然后將,得到答案.【詳解】等比數(shù)列中,又因?yàn)椋?,所以,故選D項.【點(diǎn)睛】本題考查等比數(shù)列的基本量計算,屬于簡單題.5、A【解析】

設(shè)點(diǎn)關(guān)于直線對稱的點(diǎn)為,根據(jù)斜率關(guān)系和中點(diǎn)坐標(biāo)公式,列出方程組,即可求解.【詳解】由題意,設(shè)點(diǎn)關(guān)于直線對稱的點(diǎn)為,則,解得,即點(diǎn)關(guān)于直線對稱的點(diǎn)為,故選A.【點(diǎn)睛】本題主要考查了點(diǎn)關(guān)于直線的對稱點(diǎn)的求解,其中解答中熟記點(diǎn)關(guān)于直線的對稱點(diǎn)的解法是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.6、D【解析】

由眾數(shù)就是出現(xiàn)次數(shù)最多的數(shù),可確定,題中中位數(shù)是中間兩個數(shù)的平均數(shù),這樣可計算出.【詳解】由甲組數(shù)據(jù)的眾數(shù)為11,得,乙組數(shù)據(jù)中間兩個數(shù)分別為6和,所以中位數(shù)是,得到,因此.故選:D.【點(diǎn)睛】本題考查眾數(shù)和中位數(shù)的概念,掌握眾數(shù)與中位數(shù)的定義是解題基礎(chǔ).7、B【解析】

根據(jù)函數(shù)f(x)的解析式,列出使解析式有意義的不等式組,求出解集即可.【詳解】∵函數(shù)f(x)=+lg(3x+1),∴;解得﹣<x<1,∴函數(shù)f(x)的定義域是(﹣,1).故選B.【點(diǎn)睛】本題考查了求函數(shù)定義域的應(yīng)用問題,解題的關(guān)鍵是列出使函數(shù)解析式有意義的不等式組,是基礎(chǔ)題目.8、D【解析】解:因?yàn)闉楫惷嬷本€,直線,則與的位置關(guān)系是異面或相交,選D9、D【解析】

根據(jù)題干條件可得到數(shù)列>1,0<q<1,數(shù)列之和越加越大,故A錯誤;根據(jù)等比數(shù)列性質(zhì)得到進(jìn)而得到B正確;由前n項積的性質(zhì)得到是數(shù)列中的最大值;從開始后面的值越來越小,但是都是大于0的,故沒有最小值.【詳解】因?yàn)闂l件:,,,可知數(shù)列>1,0<q<1,根據(jù)等比數(shù)列的首項大于0,公比大于0,得到數(shù)列項均為正,故前n項和,項數(shù)越多,和越大,故A不正確;因?yàn)楦鶕?jù)數(shù)列性質(zhì)得到,故B不對;前項之積為,所有大于等于1的項乘到一起,能夠取得最大值,故是數(shù)列中的最大值.數(shù)列無最小值,因?yàn)閺拈_始后面的值越來越小,但是都是大于0的,故沒有最小值.故D正確.故答案為D.【點(diǎn)睛】本題考查了等比數(shù)列的通項公式及其性質(zhì)、遞推關(guān)系、不等式的解法,考查了推理能力與計算能力,屬于中檔題.10、A【解析】

設(shè)其中一段的長度為,可得出另一段長度為,根據(jù)題意得出的取值范圍,再利用幾何概型的概率公式可得出所求事件的概率.【詳解】設(shè)其中一段的長度為,可得出另一段長度為,由于剪得兩段繩有一段長度不小于,則或,可得或.由于,所以,或.由幾何概型的概率公式可知,事件“剪得兩段繩有一段長度不小于”的概率為,故選:A.【點(diǎn)睛】本題考查長度型幾何概型概率公式的應(yīng)用,解題時要將問題轉(zhuǎn)化為區(qū)間型的幾何概型來計算概率,考查分析問題以及運(yùn)算求解能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

首先根據(jù)等差數(shù)列的性質(zhì)得到,再根據(jù)即可得到公差的值.【詳解】,解得.,所以.故答案為:【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì),熟記公式為解題的關(guān)鍵,屬于簡單題.12、【解析】

計算出抽樣中已安裝寬帶的用戶比例,乘以總?cè)藬?shù),求得小區(qū)已安裝寬帶的居民數(shù).【詳解】抽樣中已安裝寬帶的用戶比例為,故小區(qū)已安裝寬帶的居民有戶.【點(diǎn)睛】本小題主要考查用樣本估計總體,考查頻率的計算,屬于基礎(chǔ)題.13、【解析】

先將和分別解出來,然后求交集即可【詳解】要使,則有且由得由得因?yàn)樗栽瘮?shù)的定義域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】解三角不等式的方法:1.在單位圓中利用三角函數(shù)線,2.利用三角函數(shù)的圖像14、.【解析】

從到時左邊需增乘的代數(shù)式是,化簡即可得出.【詳解】假設(shè)時命題成立,則,當(dāng)時,從到時左邊需增乘的代數(shù)式是.故答案為:.【點(diǎn)睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,考查推理能力與計算能力,屬于中檔題.15、.【解析】

把圓的一般方程化為圓的標(biāo)準(zhǔn)方程,得出表示圓的條件,即可求解,得到答案.【詳解】由題意,方程可化為,方程表示圓,則滿足,解得.【點(diǎn)睛】本題主要考查了圓的一般方程與圓的標(biāo)準(zhǔn)方程的應(yīng)用,其中熟記圓的一般方程與圓的標(biāo)準(zhǔn)方程的互化是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ).16、【解析】

根據(jù)得,再利用正弦定理得,化簡得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【詳解】根據(jù)題意,由正弦定理可得則所以答案為。【點(diǎn)睛】本題主要考查向量與三角形正余弦定理的綜合應(yīng)用,屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、海里【解析】

在中,利用正弦定理可求得BP的長,在直角三角形中,利用勾股定理,可求P、C間的距離.【詳解】在中,,,,由正弦定理知得,∴.在中,,又,∴,∴可得P、C間距離為(海里)【點(diǎn)睛】本題的考點(diǎn)是解三角形的實(shí)際應(yīng)用,主要考查將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,可把條件和問題放到三角形中,利用正弦定理及勾股定理求解.18、(1);(2)5.【解析】

(1)根據(jù)正弦定理得,化簡即得C的值;(2)先利用余弦定理求出a的值,再求的面積.【詳解】(1)因?yàn)?,根?jù)正弦定理得,又,從而,由于,所以.(2)根據(jù)余弦定理,而,,,代入整理得,解得或(舍去).故的面積為.【點(diǎn)睛】本題主要考查正弦余弦定理解三角形,考查三角形面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.19、(1)4;(2)證明見解析;(3)時,平面,證明見解析.【解析】

(1)直接根據(jù)三棱柱體積計算公式求解即可;(2)利用中位線證明面面平行,再根據(jù)面面平行的性質(zhì)定理證明平面;(3)首先設(shè)為,利用平面列出關(guān)于參數(shù)的方程求解即可.【詳解】(1)∵三棱柱的側(cè)棱垂直于底面,且,,,∴由三棱柱體積公式得:;(2)證明:取的中點(diǎn),連接,,∵,分別為和的中點(diǎn),∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)連接,設(shè),則由題意知,,∵三棱柱的側(cè)棱垂直于底面,∴平面平面,∵,∴,又點(diǎn)是的中點(diǎn),∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,則時,平面.【點(diǎn)睛】本題考查了三棱柱的體積公式,線面平行的證明,利用線面垂直求參數(shù),屬于難題.20、(Ⅰ)2;(Ⅱ).【解析】試題分析:(Ⅰ)先由條件得到的坐標(biāo),根據(jù)與垂直可得,整理得,從而得到.(Ⅱ)由得到,故當(dāng)時,取得最小值為.試題解析:(Ⅰ)由條件可得,因?yàn)榕c垂直,所以,即,所以,所以.(Ⅱ)由得,所以當(dāng)時,取得最小值,所以的最小值為.21、(Ⅰ)(Ⅱ)【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進(jìn)而得到,由轉(zhuǎn)化為,求出,進(jìn)而求出,從而求出的三角函數(shù)值,利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論