




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
浙江溫州第十二中學2024年中考押題數(shù)學預測卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.要整齊地栽一行樹,只要確定兩端的樹坑的位置,就能確定這一行樹坑所在的直線,這里用到的數(shù)學知識是()A.兩點之間的所有連線中,線段最短B.經(jīng)過兩點有一條直線,并且只有一條直線C.直線外一點與直線上各點連接的所有線段中,垂線段最短D.經(jīng)過一點有且只有一條直線與已知直線垂直2.3的倒數(shù)是()A. B. C. D.3.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關系如圖,下列信息:(1)出租車的速度為100千米/時;(2)客車的速度為60千米/時;(3)兩車相遇時,客車行駛了3.75小時;(4)相遇時,出租車離甲地的路程為225千米.其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個4.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.5.=()A.±4 B.4 C.±2 D.26.2017年底我國高速公路已開通里程數(shù)達13.5萬公里,居世界第一,將數(shù)據(jù)135000用科學計數(shù)法表示正確的是()A.1.35×106 B.1.35×105 C.13.5×104 D.135×1037.如圖,⊙O中,弦AB、CD相交于點P,若∠A=30°,∠APD=70°,則∠B等于()A.30° B.35° C.40° D.50°8.如圖,正比例函數(shù)的圖像與反比例函數(shù)的圖象相交于A、B兩點,其中點A的橫坐標為2,當時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>29.甲、乙兩人參加射擊比賽,每人射擊五次,命中的環(huán)數(shù)如下表:次序第一次第二次第三次第四次第五次甲命中的環(huán)數(shù)(環(huán))67868乙命中的環(huán)數(shù)(環(huán))510767根據(jù)以上數(shù)據(jù),下列說法正確的是()A.甲的平均成績大于乙 B.甲、乙成績的中位數(shù)不同C.甲、乙成績的眾數(shù)相同 D.甲的成績更穩(wěn)定10.加工爆米花時,爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足的函數(shù)關系p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實驗的數(shù)據(jù).根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可得到最佳加工時間為()A.4.25分鐘 B.4.00分鐘 C.3.75分鐘 D.3.50分鐘二、填空題(共7小題,每小題3分,滿分21分)11.在平面直角坐標系xOy中,若干個半徑為1個單位長度,圓心角是的扇形按圖中的方式擺放,動點K從原點O出發(fā),沿著“半徑OA弧AB弧BC半徑CD半徑DE”的曲線運動,若點K在線段上運動的速度為每秒1個單位長度,在弧線上運動的速度為每秒個單位長度,設第n秒運動到點K,為自然數(shù),則的坐標是____,的坐標是____12.已知點(﹣1,m)、(2,n)在二次函數(shù)y=ax2﹣2ax﹣1的圖象上,如果m>n,那么a____0(用“>”或“<”連接).13.如果一個正多邊形每一個內(nèi)角都等于144°,那么這個正多邊形的邊數(shù)是____.14.如圖,已知△ABC,AB=6,AC=5,D是邊AB的中點,E是邊AC上一點,∠ADE=∠C,∠BAC的平分線分別交DE、BC于點F、G,那么的值為__________.15.已知反比例函數(shù)y=在第二象限內(nèi)的圖象如圖,經(jīng)過圖象上兩點A、E分別引y軸與x軸的垂線,交于點C,且與y軸與x軸分別交于點M、B.連接OC交反比例函數(shù)圖象于點D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_____.16.已知a+=2,求a2+=_____.17.如圖,在△ABC中,∠BAC=50°,AC=2,AB=3,將△ABC繞點A逆時針旋轉50°,得到△AB1C1,則陰影部分的面積為_______.三、解答題(共7小題,滿分69分)18.(10分)某家電銷售商場電冰箱的銷售價為每臺1600元,空調的銷售價為每臺1400元,每臺電冰箱的進價比每臺空調的進價多300元,商場用9000元購進電冰箱的數(shù)量與用7200元購進空調數(shù)量相等.(1)求每臺電冰箱與空調的進價分別是多少?(2)現(xiàn)在商場準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進空調數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?(3)實際進貨時,廠家對電冰箱出廠價下調K(0<K<150)元,若商場保持這兩種家電的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺家電銷售總利潤最大的進貨方案.19.(5分)“知識改變命運,科技繁榮祖國”.在舉辦一屆全市科技運動會上.下圖為某校2017年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數(shù)統(tǒng)計圖:(1)該校參加航模比賽的總人數(shù)是人,空模所在扇形的圓心角的度數(shù)是;(2)并把條形統(tǒng)計圖補充完整;(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎.今年全市中小學參加航模比賽人數(shù)共有2500人,請你估算今年參加航模比賽的獲獎人數(shù)約是多少人?20.(8分)先化簡,再在1,2,3中選取一個適當?shù)臄?shù)代入求值.21.(10分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.求證:BE=EC填空:①若∠B=30°,AC=2,則DE=______;②當∠B=______度時,以O,D,E,C為頂點的四邊形是正方形.22.(10分)某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2500元,銷售單價定為3200元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3200元銷售:若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低5元,但銷售單價均不低于2800元.商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2800元?設商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關系式,并寫出自變量x的取值范圍該公司的銷售人員發(fā)現(xiàn):當商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤越大,公司應將最低銷售單價調整為多少元?(其它銷售條件不變)23.(12分)為了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進行調查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.
(1)參加音樂類活動的學生人數(shù)為
人,參加球類活動的人數(shù)的百分比為
(2)請把圖2(條形統(tǒng)計圖)補充完整;
(3)該校學生共600人,則參加棋類活動的人數(shù)約為.
(4)該班參加舞蹈類活動的4位同學中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準備從中選取兩名同學組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
24.(14分)已知:如圖所示,在中,,,求和的度數(shù).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
本題要根據(jù)過平面上的兩點有且只有一條直線的性質解答.【詳解】根據(jù)兩點確定一條直線.故選:B.【點睛】本題考查了“兩點確定一條直線”的公理,難度適中.2、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質:負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).3、D【解析】
根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個小題是否正確,從而可以解答本題.【詳解】由圖象可得,出租車的速度為:600÷6=100千米/時,故(1)正確,客車的速度為:600÷10=60千米/時,故(2)正確,兩車相遇時,客車行駛時間為:600÷(100+60)=3.75(小時),故(3)正確,相遇時,出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.【點睛】本題考查一次函數(shù)的應用,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.4、D【解析】
找到從正面看所得到的圖形即可,注意所有看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看第一層是二個正方形,第二層是左邊一個正方形.
故選A.【點睛】本題考查了簡單組合體的三視圖的知識,解題的關鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎題,難度不大.5、B【解析】
表示16的算術平方根,為正數(shù),再根據(jù)二次根式的性質化簡.【詳解】解:,故選B.【點睛】本題考查了算術平方根,本題難點是平方根與算術平方根的區(qū)別與聯(lián)系,一個正數(shù)算術平方根有一個,而平方根有兩個.6、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:135000=1.35×105故選B.【點睛】此題考查科學記數(shù)法表示較大的數(shù).科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.7、C【解析】分析:欲求∠B的度數(shù),需求出同弧所對的圓周角∠C的度數(shù);△APC中,已知了∠A及外角∠APD的度數(shù),即可由三角形的外角性質求出∠C的度數(shù),由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故選C.8、D【解析】
先根據(jù)反比例函數(shù)與正比例函數(shù)的性質求出B點坐標,再由函數(shù)圖象即可得出結論.【詳解】解:∵反比例函數(shù)與正比例函數(shù)的圖象均關于原點對稱,
∴A、B兩點關于原點對稱,
∵點A的橫坐標為1,∴點B的橫坐標為-1,
∵由函數(shù)圖象可知,當-1<x<0或x>1時函數(shù)y1=k1x的圖象在的上方,
∴當y1>y1時,x的取值范圍是-1<x<0或x>1.
故選:D.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,能根據(jù)數(shù)形結合求出y1>y1時x的取值范圍是解答此題的關鍵.9、D【解析】
根據(jù)已知條件中的數(shù)據(jù)計算出甲、乙的方差,中位數(shù)和眾數(shù)后,再進行比較即可.【詳解】把甲命中的環(huán)數(shù)按大小順序排列為:6,6,7,8,8,故中位數(shù)為7;把乙命中的環(huán)數(shù)按大小順序排列為:5,6,7,7,10,故中位數(shù)為7;∴甲、乙成績的中位數(shù)相同,故選項B錯誤;根據(jù)表格中數(shù)據(jù)可知,甲的眾數(shù)是8環(huán),乙的眾數(shù)是7環(huán),∴甲、乙成績的眾數(shù)不同,故選項C錯誤;甲命中的環(huán)數(shù)的平均數(shù)為:x甲乙命中的環(huán)數(shù)的平均數(shù)為:x乙∴甲的平均數(shù)等于乙的平均數(shù),故選項A錯誤;甲的方差S甲2=15[(6?7)2+(7?7)2+(8?7)2+(6?7)2乙的方差=15[(5?7)2+(10?7)2+(7?7)2+(6?7)2+(7?7)2因為2.8>0.8,所以甲的穩(wěn)定性大,故選項D正確.故選D.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.同時還考查了眾數(shù)的中位數(shù)的求法.10、C【解析】
根據(jù)題目數(shù)據(jù)求出函數(shù)解析式,根據(jù)二次函數(shù)的性質可得.【詳解】根據(jù)題意,將(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=?0.2,b=1.5,c=?2,即p=?0.2t2+1.5t?2,當t=?=3.75時,p取得最大值,故選C.【點睛】本題考查了二次函數(shù)的應用,熟練掌握性質是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
設第n秒運動到Kn(n為自然數(shù))點,根據(jù)點K的運動規(guī)律找出部分Kn點的坐標,根據(jù)坐標的變化找出變化規(guī)律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此規(guī)律即可得出結論.【詳解】設第n秒運動到Kn(n為自然數(shù))點,觀察,發(fā)現(xiàn)規(guī)律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).∵2018=4×504+2,∴K2018為(1009,0).故答案為:(),(1009,0).【點睛】本題考查了規(guī)律型中的點的坐標,解題的關鍵是找出變化規(guī)律,本題屬于中檔題,解決該題型題目時,根據(jù)運動的規(guī)律找出點的坐標,根據(jù)坐標的變化找出坐標變化的規(guī)律是關鍵.12、>;【解析】
∵=a(x-1)2-a-1,∴拋物線對稱軸為:x=1,由拋物線的對稱性,點(-1,m)、(2,n)在二次函數(shù)的圖像上,∵|?1?1|>|2?1|,且m>n,∴a>0.故答案為>13、1【解析】
設正多邊形的邊數(shù)為n,然后根據(jù)多邊形的內(nèi)角和公式列方程求解即可.【詳解】解:設正多邊形的邊數(shù)為n,由題意得,=144°,解得n=1.故答案為1.【點睛】本題考查了多邊形的內(nèi)角與外角,熟記公式并準確列出方程是解題的關鍵.14、【解析】
由題中所給條件證明△ADF△ACG,可求出的值.【詳解】解:在△ADF和△ACG中,AB=6,AC=5,D是邊AB的中點AG是∠BAC的平分線,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案為.【點睛】本題考查了相似三角形的判定和性質,難度適中,需熟練掌握.15、1.【解析】連結AD,過D點作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.16、1【解析】試題分析:∵==4,∴=4-1=1.故答案為1.考點:完全平方公式.17、π【解析】試題分析:∵,∴S陰影===.故答案為.考點:旋轉的性質;扇形面積的計算.三、解答題(共7小題,滿分69分)18、(1)每臺空調的進價為1200元,每臺電冰箱的進價為1500元;(2)共有5種方案;(3)當100<k<150時,購進電冰箱38臺,空調62臺,總利潤最大;當0<k<100時,購進電冰箱34臺,空調66臺,總利潤最大,當k=100時,無論采取哪種方案,y1恒為20000元.【解析】
(1)用“用9000元購進電冰箱的數(shù)量與用7200元購進空調數(shù)量相等”建立方程即可;(2)建立不等式組求出x的范圍,代入即可得出結論;(3)建立y1=(k﹣100)x+20000,分三種情況討論即可.【詳解】(1)設每臺空調的進價為m元,則每臺電冰箱的進價(m+300)元,由題意得,,∴m=1200,經(jīng)檢驗,m=1200是原分式方程的解,也符合題意,∴m+300=1500元,答:每臺空調的進價為1200元,每臺電冰箱的進價為1500元;(2)由題意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,∵,∴33≤x≤38,∵x為正整數(shù),∴x=34,35,36,37,38,即:共有5種方案;(3)設廠家對電冰箱出廠價下調k(0<k<150)元后,這100臺家電的銷售總利潤為y1元,∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,當100<k<150時,y1隨x的最大而增大,∴x=38時,y1取得最大值,即:購進電冰箱38臺,空調62臺,總利潤最大,當0<k<100時,y1隨x的最大而減小,∴x=34時,y1取得最大值,即:購進電冰箱34臺,空調66臺,總利潤最大,當k=100時,無論采取哪種方案,y1恒為20000元.【點睛】本題考查了一次函數(shù)的應用,分式方程的應用,不等式組的應用,根據(jù)題意找出等量關系是解題的關鍵.19、(1)24,120°;(2)見解析;(3)1000人【解析】
(1)由建模的人數(shù)除以占的百分比,求出調查的總人數(shù)即可,再算空模人數(shù),即可知道空模所占百分比,從而算出對應的圓心角度數(shù);(2)根據(jù)空模人數(shù)然后補全條形統(tǒng)計圖;(3)根據(jù)隨機取出人數(shù)獲獎的人數(shù)比,即可得到結果.【詳解】解:(1)該校參加航模比賽的總人數(shù)是6÷25%=24(人),則參加空模人數(shù)為24﹣(6+4+6)=8(人),∴空模所在扇形的圓心角的度數(shù)是360°×=120°,故答案為:24,120°;(2)補全條形統(tǒng)計圖如下:(3)估算今年參加航模比賽的獲獎人數(shù)約是2500×=1000(人).【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關鍵.20、,當x=2時,原式=.【解析】試題分析:先括號內(nèi)通分,然后計算除法,最后取值時注意使得分式有意義,最后代入化簡即可.試題解析:原式===當x=2時,原式=.21、(1)見解析;(2)①3;②1.【解析】
(1)證出EC為⊙O的切線;由切線長定理得出EC=ED,再求得EB=ED,即可得出結論;(2)①由含30°角的直角三角形的性質得出AB,由勾股定理求出BC,再由直角三角形斜邊上的中線性質即可得出DE;②由等腰三角形的性質,得到∠ODA=∠A=1°,于是∠DOC=90°然后根據(jù)有一組鄰邊相等的矩形是正方形,即可得到結論.【詳解】(1)證明:連接DO.∵∠ACB=90°,AC為直徑,∴EC為⊙O的切線;又∵ED也為⊙O的切線,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC為直徑,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案為3;②當∠B=1°時,四邊形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四邊形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案為1.【點睛】本題考查了圓的切線性質、解直角三角形的知識、切線長定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.22、(1)商家一次購買這種產(chǎn)品1件時,銷售單價恰好為2800元;(2)當0≤x≤10時,y=700x,當10<x≤1時,y=﹣5x2+750x,當x>1時,y=300x;(3)公司應將最低銷售單價調整為2875元.【解析】
(1)設件數(shù)為x,則銷售單價為3200-5(x-10)元,根據(jù)銷售單價恰好為2800元,列方程求解;(2)由利潤y=(銷售單價-成本單價)×件數(shù),及銷售單價均不低于2800元,按0≤x≤10,10<x≤50兩種情況列出函數(shù)關系式;(3)由(2)的函數(shù)關系式,利用二次函數(shù)的性質求利潤的最大值,并求出最大值時x的值,確定銷售單價.【詳解】(1)設商家一次購買這種產(chǎn)品x件時,銷售單價恰好為2800元.由題意得:3200﹣5(x﹣10)=2800,解得:x=1.答:商家一次購買這種產(chǎn)品1件時,銷售單價恰好為2800元;(2)設商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小升初銜接暑假計劃(9篇)
- 25年公司項目部管理人員安全培訓考試試題帶下載答案可打印
- 25年公司三級安全培訓考試試題附參考答案【培優(yōu)B卷】
- 派對策劃視覺設計協(xié)議
- 短信服務中介合同
- 環(huán)保項目分包合同范本
- 房屋還貸協(xié)議
- 拍賣品狀態(tài)說明協(xié)議
- 2025-2030中國M健康行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030中國L1自駕車行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 呼吸機的使用操作流程
- “雙碳”目標下數(shù)智化供應鏈運作管理策略研究
- 江蘇省蘇州市2024-2025學年度第二學期七年級歷史期中模擬試卷(1)含答案
- 2024年山東省國控設計集團有限公司招聘筆試真題
- 學校校園膳食監(jiān)督家長委員會履職承諾協(xié)議書
- 空調定期清洗消毒制度消毒
- 2024-2025學年下學期高二政治選必修2第三單元B卷
- 重慶市拔尖強基聯(lián)盟2024-2025學年高三下學期3月聯(lián)合考試歷史試題(含答案)
- 果園種植管理合作合同范本
- 居室空間設計 課件 項目四 起居室空間設計
- 【歷史】隋唐時期的科技與文化教學設計 2024-2025學年統(tǒng)編版七年級歷史下冊
評論
0/150
提交評論