版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省蘇州市第五中學2025屆數(shù)學高一下期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,為兩個平面,則能斷定∥的條件是()A.內(nèi)有無數(shù)條直線與平行 B.,平行于同一條直線C.,垂直于同一條直線 D.,垂直于同一平面2.在數(shù)列{an}中,an=31﹣3n,設bn=anan+1an+2(n∈N*).Tn是數(shù)列{bn}的前n項和,當Tn取得最大值時n的值為()A.11 B.10 C.9 D.83.已知=(2,3),=(3,t),=1,則=A.-3 B.-2C.2 D.34.已知數(shù)列的通項公式是,則等于()A.70 B.28 C.20 D.85.已知函數(shù),其中為整數(shù),若在上有兩個不相等的零點,則的最大值為()A. B. C. D.6.若平面∥平面,直線∥平面,則直線與平面的關系為()A.∥ B. C.∥或 D.7.一個幾何體的三視圖如圖(圖中尺寸單位:m),則該幾何體的體積為()A. B. C. D.8.在中,角的對邊分別是,若,則()A. B.或 C.或 D.9.如圖,在平行四邊形中,下列結論中錯誤的是()A. B. C. D.10.已知某7個數(shù)據(jù)的平均數(shù)為5,方差為4,現(xiàn)又加入一個新數(shù)據(jù)5,此時這8個數(shù)的方差為()A. B.3 C. D.4二、填空題:本大題共6小題,每小題5分,共30分。11.等比數(shù)列中,,則公比____________.12.已知公式,,借助這個公式,我們可以求函數(shù)的值域,則該函數(shù)的值域是______.13.把一枚質地均勻的硬幣先后拋擲兩次,兩次都是正面向上的概率為________.14.若是三角形的內(nèi)角,且,則等于_____________.15.函數(shù),的圖象與直線y=k有且僅有兩個不同的交點,則k的取值范圍是_____.16.《九章算術》是體現(xiàn)我國古代數(shù)學成就的杰出著作,其中(方田)章給出的計算弧田面積的經(jīng)驗公式為:弧田面積(弦矢矢2),弧田(如圖陰影部分)由圓弧及其所對的弦圍成,公式中“弦”指圓弧所對弦的長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有弧長為米,半徑等于米的弧田,則弧所對的弦的長是_____米,按照上述經(jīng)驗公式計算得到的弧田面積是___________平方米.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當,時,求不等式的解集;(2)若,,的最小值為2,求的最小值.18.如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為(1)求的值;(2)求的值.19.平面四邊形中,.(1)若,求;(2)設,若,求面積的最大值.20.已知銳角三個內(nèi)角、、的對邊分別是,且.(1)求A的大小;(2)若,求的面積.21.已知函數(shù),為實數(shù).(1)若對任意,都有成立,求實數(shù)的值;(2)若,求函數(shù)的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
對四個選項逐個分析,可得出答案.【詳解】對于選項A,當,相交于直線時,內(nèi)有無數(shù)條直線與平行,即A錯誤;對于選項B,當,相交于直線時,存在直線滿足:既與平行又不在兩平面內(nèi),該直線平行于,,故B錯誤;對于選項C,設直線AB垂直于,平面,垂足分別為A,B,假設與不平行,設其中一個交點為C,則三角形ABC中,,顯然不可能成立,即假設不成立,故與平行,故C正確;對于選項D,,垂直于同一平面,與可能平行也可能相交,故D錯誤.【點睛】本題考查了面面平行的判斷,考查了學生的空間想象能力,屬于中檔題.2、B【解析】
由已知得到等差數(shù)列的公差,且數(shù)列的前11項大于1,自第11項起小于1,由,得出從到的值都大于零,時,時,,且,而當時,,由此可得答案.【詳解】由,得,等差數(shù)列的公差,由,得,則數(shù)列的前11項大于1,自第11項起小于1.由,可得從到的值都大于零,當時,時,,且,當時,,所以取得最大值時的值為11.故選:B.【點睛】本題主要考查了數(shù)列遞推式,以及數(shù)列的和的最值的判定,其中解答的關鍵是明確數(shù)列的項的特點,著重考查了分析問題和解答問題的能力,屬于中檔試題.3、C【解析】
根據(jù)向量三角形法則求出t,再求出向量的數(shù)量積.【詳解】由,,得,則,.故選C.【點睛】本題考點為平面向量的數(shù)量積,側重基礎知識和基本技能,難度不大.4、C【解析】
因為,所以,所以=20.故選C.5、A【解析】
利用一元二次方程根的分布的充要條件得到關于的不等式,再由為整數(shù),可得當取最小時,取最大,從而求得答案.【詳解】∵在上有兩個不相等的零點,∴∵,∴當取最小時,取最大,∵兩個零點的乘積小于1,∴,∵為整數(shù),令時,,滿足.故選:A.【點睛】本題考查一元二次函數(shù)的零點,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意為整數(shù)的應用.6、C【解析】
利用空間幾何體,發(fā)揮直觀想象,易得直線與平面的位置關系.【詳解】設平面為長方體的上底面,平面為長方體的下底面,因為直線∥平面,所以直線通過平移后,可能與平面平行,也可能平移到平面內(nèi),所以∥或.【點睛】空間中點、線、面位置關系問題,??梢越柚L方體進行研究,考查直觀想象能力.7、C【解析】
根據(jù)三視圖判斷幾何體的形狀,計算即可得解.【詳解】該幾何體是一個半徑為1的球體削去四分之一,體積為.故選:C.【點睛】本題考查了三視圖的識別和球的體積計算,屬于基礎題.8、D【解析】
直接利用正弦定理,即可得到本題答案,記得要檢驗,大邊對大角.【詳解】因為,所以,又,所以,.故選:D【點睛】本題主要考查利用正弦定理求角.9、C【解析】
根據(jù)向量的定義及運算法則一一分析選項正誤即可.【詳解】在平行四邊形中,顯然有,,故A,D正確;根據(jù)向量的平行四邊形法則,可知,故B正確;根據(jù)向量的三角形法,,故C錯誤;故選:C.【點睛】本題考查平面向量的基本定義和運算法則,屬于基礎題.10、C【解析】
由平均數(shù)公式求得原有7個數(shù)的和,可得新的8個數(shù)的平均數(shù),由于新均值和原均值相等,因此由方差公式可得新方差.【詳解】因為7個數(shù)據(jù)的平均數(shù)為5,方差為4,現(xiàn)又加入一個新數(shù)據(jù)5,此時這8個數(shù)的平均數(shù)為,方差為,由平均數(shù)和方差的計算公式可得,.故選:C.【點睛】本題考查均值與方差的概念,掌握均值與方差的計算公式是解題關鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)題意得到:,解方程即可.【詳解】由題知:,解得:.故答案為:【點睛】本題主要考查等比數(shù)列的性質,熟練掌握等比數(shù)列的性質為解題的關鍵,屬于簡單題.12、【解析】
根據(jù)題意,可令,結合,再進行整體代換即可求解【詳解】令,則,,,則,,,則函數(shù)值域為故答案為:【點睛】本題考查3倍角公式的使用,函數(shù)的轉化思想,屬于中檔題13、【解析】
把一枚質地均勻的硬幣先后拋擲兩次,利用列舉法求出基本事件有4個,由此能求出兩次都是正面向上的概率.【詳解】把一枚質地均勻的硬幣先后拋擲兩次,基本事件有4個,分別為:正正,正反,反正,反反,兩次都是正面向上的概率為.故答案為:.【點睛】本題考查古典概型的概率計算,求解時注意列舉法的應用,即列舉出所有等可能結果.14、【解析】∵是三角形的內(nèi)角,且,∴故答案為點睛:本題是一道易錯題,在上,,分兩種情況:若,則;若,則有兩種情況銳角或鈍角.15、【解析】
作出其圖像,可只有兩個交點時k的范圍為.故答案為16、【解析】
在中,由題意可知:,弧長為,即可以求出,則求得的值,根據(jù)題意可求矢和弦的值及弦長,利用公式可以完成.【詳解】如上圖在中,可得:,可以得:矢=所以:弧田面積(弦矢矢2)=所以填寫(1).(2).【點睛】本題是數(shù)學文化考題,扇形為載體的新型定義題,求弦長屬于簡單的解三角形問題,而作為第二空,我們首先知道公式中涉及到了“矢”,所以我們必須把“矢”的定義弄清楚,再借助定義求出它的值,最后只是簡單代入公式計算即能完成.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用零點討論法解絕對值不等式;(2)利用絕對值三角不等式得到a+b=2,再利用基本不等式求的最小值.【詳解】(1)當,時,,得或或,解得:,∴不等式的解集為.(2),∴,∴,當且僅當,時取等號.∴的最小值為.【點睛】本題主要考查零點討論法解絕對值不等式,考查絕對值三角不等式和基本不等式求最值,意在考查學生對這些知識的理解掌握水平和分析推理能力.18、(1)(2)【解析】
試題分析:(1)根據(jù)題意,由三角函數(shù)的定義可得與的值,進而可得出與的值,從而可求與的值就,結合兩角和正切公式可得答案;(2)由兩角和的正切公式,可得出的值,再根據(jù)的取值范圍,可得出的取值范圍,進而可得出的值.由條件得cosα=,cosβ=.∵α,β為銳角,∴sinα==,sinβ==.因此tanα==7,tanβ==.(1)tan(α+β)===-3.(2)∵tan2β===,∴tan(α+2β)===-1.∵α,β為銳角,∴0<α+2β<,∴α+2β=19、(1);(2)【解析】
(1)法一:在中,利用余弦定理即可得到的長度;法二:在中,由正弦定理可求得,再利用正弦定理即可得到的長度;(2)在中,使用正弦定理可知是等邊三角形或直角三角形,分兩種情況分別找出面積表達式計算最大值即可.【詳解】(1)法一:中,由余弦定理得,即,解得或舍去,所以.法二:中,由正弦定理得,即.解得,故,.由正弦定理得,即,解得.(2)中,由正弦定理及,可得,即或,即或.是等邊三角形或直角三角形.中,設,由正弦定理得.若是等邊三角形,則.∵當時,面積的最大值為;若是直角三角形,則.當時,面積的最大值為;綜上所述,面積的最大值為.【點睛】本題主要考查正弦定理,余弦定理,面積公式,三角函數(shù)最值的相關應用,綜合性強,意在考查學生的計算能力,轉化能力,分析三角形的形狀并討論是解決本題的關鍵.20、(1)(2)【解析】
(1)根據(jù)正弦定理把邊化為對角的正弦求解;(2)根據(jù)余弦定理和已知求出,再根據(jù)面積公式求解.【詳解】解:(1)由正弦定理得∵,∴,又∵∴(2)由余弦定理得所以即∴∴的面積為【點睛】本題考查解三角形.常用方法有正弦定理,余弦定理,三角形面積公式;注意增根的排除.21、(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版打印機維修與遠程技術支持服務合同6篇
- 2024年消防通信設備升級合同3篇
- 2024年度海洋工程開發(fā)利用貸款合同
- 2024年度礦山開采土石方運輸與生態(tài)恢復合同范本3篇
- 2024年版二手房交易詳細合同一
- 2024年度工程車保險服務合同3篇
- 2024年某工程項目返點合作具體合同版B版
- 2024土地居間服務合同范本:文化旅游用地居間服務模板3篇
- 二手醫(yī)療設備銷售合同2024版6篇
- 2024版二手三輪電動車轉讓及電動車駕駛培訓與租賃服務合同3篇
- 吊裝作業(yè)施工方案(模板)
- 初中綜合實踐課程標準
- 日本江崎格力高歷史
- 初物管理辦法及規(guī)定
- 代扣服務協(xié)議
- 某燃煤采暖鍋爐煙氣除塵系統(tǒng)設計1
- 中心試驗室標準化管理辦法
- 龍王廟煤礦消防工作匯報
- 一些常見物質的安托因常數(shù)
- 庫存盤點盈虧處理申請表xls
- 35kV及以下架空電力線路施工及驗收規(guī)范
評論
0/150
提交評論